精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
(1)求函数f(x)的单调增区间;
(2)若$f(α)=2,α∈[{\frac{π}{12},\frac{5π}{12}}]$,求cos2α的值.

分析 (1)化简函数f(x)为正弦型函数,根据正弦函数的单调性写出它的单调增区间;
(2)根据f(x)的解析式,结合α的取值范围,利用三角函数关系即可求出cos2α的值.

解答 解:(1)函数$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
=$\frac{\sqrt{3}}{2}$sin2x+2•$\frac{1+cos2x}{2}$-$\frac{1-cos2x}{2}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$cos2x+$\frac{1}{2}$
=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+$\frac{1}{2}$,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,k∈Z,
∴函数f(x)的单调增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z;
(2)∵f(α)=$\sqrt{3}$sin(2α+$\frac{π}{3}$)+$\frac{1}{2}$=2,
∴sin(2α+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
又α∈[$\frac{π}{12}$,$\frac{5π}{12}$],
∴$\frac{π}{2}$≤2α+$\frac{π}{3}$≤$\frac{7π}{6}$,
∴2α+$\frac{π}{3}$=$\frac{2π}{3}$,
∴2α=$\frac{π}{3}$,
∴cos2α=$\frac{1}{2}$.

点评 本题考查了三角函数的化简求值以及三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.log52•log425等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:x2+y2=r2的任意一条切线l与椭圆$M:\frac{x^2}{6}+\frac{y^2}{3}=1$都有两个不同的交点A,B.
(1)求圆O半径r的取值范围;
(2)是否存在圆O,满足OA⊥OB恒成立?若存在,求出圆O的方程及$|{\overrightarrow{OA}}|•|{\overrightarrow{OB}}|$的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小明和小东两人比赛下象棋,小明不输的概率是$\frac{3}{4}$,小东输的概率是$\frac{1}{2}$,则两人和棋的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0.若“¬p”是“¬q”的充分不必要条件,则实数m的取值范围为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a∈R,若函数f(x)=ex+ax有大于0的极值点,则a的取值范围是a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=3${\;}^{-{x}^{2}+2x+3}$的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,且$\overrightarrow{a}•\overrightarrow{b}$=12,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$上的投影为(  )
A.$\frac{12}{5}$B.4C.$-\frac{12}{5}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项均不为0,a1=$\frac{1}{2}$,且满足3an+1-an+2an+1an=0,数列{bn}满足bn=$\frac{1}{a_n}$+1.
(Ⅰ)求证:数列{bn}为等比数列;
(Ⅱ)若cn=$\frac{n}{a_n}$,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案