精英家教网 > 高中数学 > 题目详情
20.一个几何体的三视图如图所示,则它的体积为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$6\sqrt{2}$D.$6\sqrt{3}$

分析 由已知中的三视图,可得该几何体是一个以俯视图为底面的三棱锥,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图,可得该几何体是一个以俯视图为底面的三棱锥,
底面面积S=$\frac{1}{2}$×$(\sqrt{2}+\sqrt{2})$×(1+1)=2$\sqrt{2}$,
棱锥的高h=3,
故体积V=$\frac{1}{3}Sh$=2$\sqrt{2}$,
故选:A

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数$f(x)={x^2}+ax+\frac{1}{x}$在$({\frac{1}{2}\;\;,\;\;1})$内任取两个实数p,q,且p≠q,不等式$\frac{f(p)-f(q)}{p-q}>0$恒成立,则a的取值范围是(  )
A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x-alnx,当x>1时,f(x)>0恒成立,则实数a的取值范围是(  )
A.(1,+∞)B.(-∞,1)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,当n≥2,n∈Z时,fn(x)表示fn-1(x)的导函数,若输入函数f1(x)=sinx-cosx,则输出的函数fn(x)可化为(  )
A.$\sqrt{2}$sin(x+$\frac{π}{4}$)B.$\sqrt{2}$sin(x-$\frac{π}{4}$)C.-$\sqrt{2}$sin(x+$\frac{π}{4}$)D.-$\sqrt{2}$sin(x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合P={x|-1≤x≤1},M={a},若P∩M=∅,则a取值范围是(  )
A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个正方体的顶点都在球面上,已知球的体积为36π,则正方体的棱长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}}\right.(θ是参数)$,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l1:$2ρsin(θ+\frac{π}{3})-\sqrt{3}=0$,射线${l_2}:θ=\frac{π}{3}(ρ>0)$与曲线C的交点为P,l2与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a>0是函数y=ax2+x+1在(0,+∞)上单调递增的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}为等比数列,Sn为其前n项和,且${S_n}=2017×{2016^n}-2018t$,则t=(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2017}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

同步练习册答案