精英家教网 > 高中数学 > 题目详情
14.化简与求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

分析 (1)直接利用诱导公式以及同角三角函数基本关系式化简求解即可.
(2)利用同角三角函数基本关系式化简求解即可.

解答 解:(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$
=$\frac{-cosαsinα}{-cosαtanα}$
=cosα.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$
=$\frac{|cos10°-sin10°|}{cos10°-sin10°}$
=1.

点评 本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-x-1(e是自然对数的底数).
(1)求证:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ax2+ln x.
(1)当a=-$\frac{1}{2}$时,求f(x)的极值;
(2)求函数f(x)的单调性;
(3)设函数g(x)=(2a+1)x,若当x∈(1,+∞)时,f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{i+1}{i}$,则|z|=(  )
A.1B.-1+iC.$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=2sinx+3cosx的极大值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|,x>0\\{x^2}+4x+1,x≤0\end{array}\right.$,若关于x的方程 f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则$\frac{c-2}{b-1}$的取值范围为(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=2cosα,则$cos(\frac{7π}{2}-2α)$=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)
(1)用五点法在给定的坐标系中作出函数的一个周期的图象;
(2)求函数的单调区间;
(3)求此函数的图象的对称轴方程、对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数,在区间$(\frac{π}{2},π)$上是增函数的是(  )
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

同步练习册答案