精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=ex-x-1(e是自然对数的底数).
(1)求证:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,求正数a的取值范围.

分析 (1)要证ex≥x+1,只需证f(x)=ex-x-1≥0,求导得f′(x)=ex-1,利用导数性质能证明ex≥x+1.
(2)不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,即a<$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上恒成立,令g(x)=$\frac{{e}^{x}-x}{x}$,x∈[$\frac{1}{2},2$],利用导数性质求g(x)=$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上的最小值,由此能求出正数a的取值范围.

解答 (本小题满分12分)
证明:(1)由题意知,要证ex≥x+1,只需证f(x)=ex-x-1≥0,
求导得f′(x)=ex-1,当x∈(0,+∞)时,f′(x)=ex-1>0,
当x∈(-∞,0)时,f′(x)=ex-1<0,
∴f(x)在x∈(0,+∞)是增函数,在x∈(-∞,0)时是减函数,
即f(x)在x=0时取最小值f(0)=0,
∴f(x)≥f(0)=0,即f(x)=ex-x-1≥0,
∴ex≥x+1.…(6分)
(2)不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,即ex-x-1>ax-1在x∈[$\frac{1}{2},2$]上恒成立,
亦即a<$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上恒成立,令g(x)=$\frac{{e}^{x}-x}{x}$,x∈[$\frac{1}{2},2$],
以下求g(x)=$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上的最小值,
${g}^{'}(x)=\frac{{e}^{x}(x-1)}{{x}^{2}}$,当x∈[$\frac{1}{2},1$]时,g′(x)<0,
当x∈[$\frac{1}{2},1$]时,g′(x)>0,
∴当x∈[$\frac{1}{2},1$]时,g(x)单调递减,当x∈[$\frac{1}{2},1$]时,g(x)单调递增,
∴g(x)在x=1处取得最小值为g(1)=e-1,
∴正数a的取值范围是(0,e-1).…(12分)

点评 本题考查不等式的证明,考查正数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.等比数列{an}中,a1=1,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-an),则f′(0)(  )
A.0B.16C.64D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若一次函数f(x)满足3f(x+1)-2f(x-1)=2x+7,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+mx-lnx.
(Ⅰ)当m=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(Ⅱ)令g(x)=f(x)-x2,当x∈(0,e](e是自然常数)时,g(x)≥3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.西部某县教委将7位大学生志愿者(4男3女)分成两组,分配到两所小学支教,若要求女生不能单独成组,且每组最多5人,则不同的分配方案共有(  )
A.36种B.68种C.104种D.110种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-lnx,a∈R.
(1)求函数f(x)的单调区间;   
( 2)当x∈(0,e]时,求g(x)=e2x-lnx的最小值;
(3)当x∈(0,e]时,证明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题错误的是(  )
A.命题“若m≤0,则方程x2+x+m=0有实数根”的逆否命题为:“若方程x2+x+m=0无实数根,则m>0”
B.“x2-x-2=0”是“x=2”的必要不充分条件
C.若p∧q为假命题,则p,q中必有一真一假
D.命题“在△ABC中,a=b?A=B?sinA=sinB”为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=x+2与椭圆Γ:$\frac{x^2}{a^2}$+y2=1(a>1)存在公共点.
(1)求a的取值范围;
(2)求当a最小时椭圆Γ的方程;
(3)在(2)的条件下,若A,B是椭圆Γ上关于y轴对称的两点,Q是椭圆Γ上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简与求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

同步练习册答案