精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|,x>0\\{x^2}+4x+1,x≤0\end{array}\right.$,若关于x的方程 f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则$\frac{c-2}{b-1}$的取值范围为(-∞,-1]∪[2,+∞).

分析 题中原方程f2(x)-bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案.

解答 解:根据题意作出f(x)的简图:

由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.
再结合题中“方程f2(x)-bf(x)+c=0有8个不同实数解”,
可以分解为形如关于k的方程k2-bk+c=0有两个不同的实数根K1、K2
且K1和K2均为大于0且小于等于1的实数,
列式如下:$\left\{\begin{array}{l}{{b}^{2}-4c>0}\\{0<\frac{b}{2}<1}\\{{0}^{2}-b×0+c>0}\\{{1}^{2}-b+c≥0}\end{array}\right.$,化简得 $\left\{\begin{array}{l}{c<\frac{{b}^{2}}{4}}\\{1-b+c≥0}\\{c>0}\\{0<b<2}\end{array}\right.$,
此不等式组表示的区域如图:

而$\frac{c-2}{b-1}$几何意义表示平面区域内的点和(1,2)的直线的斜率,
结合图象KOA=2,KAB=-1,
故z>2或z<-1,
故答案为:(-∞,-1]∪[2,+∞).

点评 本题考查了函数的图象与一元二次方程根的分布的知识,同时考查线性规划等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax-lnx,a∈R.
(1)求函数f(x)的单调区间;   
( 2)当x∈(0,e]时,求g(x)=e2x-lnx的最小值;
(3)当x∈(0,e]时,证明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三角形ABC中,∠A=30°,∠C=90°,在∠ACB内部任意作一条射线CM,与线段AB交于点M,则AM<AC的概率(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线$l:\left\{{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}}\right.$(t为参数)恒过椭圆$C:\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}}\right.$(φ为参数)在右焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简与求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2},x∈R$.
(Ⅰ)求该函数的周期和最大值;
(Ⅱ)该函数的图象经过怎样的平移和伸缩变换可以得到y=sinx(x∈R)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记min{a,b}表示a,b中较小的数,比如min{3,-1}=-1.设函数$f(x)=|{min\left\{{{x^2},{{log}_{\frac{1}{12}}}x}\right\}}|({x>0})$,若f(x1)=f(x2)=f(x3)(x1、x2、x3互不相等),则x1x2x3的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的图象如图所示,函数$f(x)=g(x)+\frac{{\sqrt{3}}}{2}cos2x-\frac{3}{2}sin2x$
(1)如果${x_1},{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)当$x∈[-\frac{π}{6},\frac{π}{3}]$时,求函数f(x)的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某初级中学领导采用系统抽样方法,从该校800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从65~80这16个数中应取的数是(  )
A.71B.68C.69D.70

查看答案和解析>>

同步练习册答案