分析 (1)椭圆的参数方程化为普通方程,可得F的坐标,直线l经过点(m,0),可求m的值;
(2)将直线l的参数方程代入椭圆C的普通方程,利用参数的几何意义,即可求|FA|•|FB|的最大值与最小值.
解答 解:(1)椭圆的参数方程化为普通方程,得$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1,
∴a=5,b=3,c=4,则点F的坐标为(4,0).
∵直线l经过点(m,0),∴m=4.…(4分)
(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα-81=0.
设点A,B在直线参数方程中对应的参数分别为t1,t2,则
|FA|•|FB|=|t1t2|=$\frac{81}{9co{s}^{2}α+25si{n}^{2}α}$=$\frac{81}{9+16si{n}^{2}α}$.…(8分)
当sinα=0时,|FA|•|FB|取最大值9;
当sinα=±1时,|FA|•|FB|取最小值$\frac{81}{25}$.…(10分)
点评 本题考查参数方程化成普通方程,考查学生的计算能力,正确运用参数的几何意义是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 双曲线 | C. | 线段 | D. | 椭圆或线段 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com