精英家教网 > 高中数学 > 题目详情
7.已知直线$l:\left\{{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}}\right.$(t为参数)恒过椭圆$C:\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}}\right.$(φ为参数)在右焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.

分析 (1)椭圆的参数方程化为普通方程,可得F的坐标,直线l经过点(m,0),可求m的值;
(2)将直线l的参数方程代入椭圆C的普通方程,利用参数的几何意义,即可求|FA|•|FB|的最大值与最小值.

解答 解:(1)椭圆的参数方程化为普通方程,得$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1,
∴a=5,b=3,c=4,则点F的坐标为(4,0).
∵直线l经过点(m,0),∴m=4.…(4分)
(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα-81=0.
设点A,B在直线参数方程中对应的参数分别为t1,t2,则
|FA|•|FB|=|t1t2|=$\frac{81}{9co{s}^{2}α+25si{n}^{2}α}$=$\frac{81}{9+16si{n}^{2}α}$.…(8分)
当sinα=0时,|FA|•|FB|取最大值9;
当sinα=±1时,|FA|•|FB|取最小值$\frac{81}{25}$.…(10分)

点评 本题考查参数方程化成普通方程,考查学生的计算能力,正确运用参数的几何意义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-a2x2+ax,a∈R,且a≠0.
(1)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围;
(2)设函数g(x)=(3a+1)x-(a2+a)x2,当x>1时,f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(0)+f(-1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,a2+b2+ab=c2
(1)求角C的大小;
(2)若c=2acosB,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{i+1}{i}$,则|z|=(  )
A.1B.-1+iC.$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4+t\\ y=t\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-4ρsinθ-2=0,直线l与圆C相交于点A、B.
(1)将圆C的极坐标方程化为直角坐标方程;
(2)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}|{lnx}|,x>0\\{x^2}+4x+1,x≤0\end{array}\right.$,若关于x的方程 f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则$\frac{c-2}{b-1}$的取值范围为(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在区间($\frac{π}{6}$,$\frac{2π}{3}$)上是单调减函数,且函数值从1减小到-1,则f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定点F1(2,0),F2(-2,0),平面内一动点P满足条件$|{P{F_1}}|+|{P{F_2}}|=4a+\frac{1}{a}(a>0)$,则点P的轨迹是(  )
A.椭圆B.双曲线C.线段D.椭圆或线段

查看答案和解析>>

同步练习册答案