精英家教网 > 高中数学 > 题目详情
12.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4+t\\ y=t\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-4ρsinθ-2=0,直线l与圆C相交于点A、B.
(1)将圆C的极坐标方程化为直角坐标方程;
(2)求线段AB的长度.

分析 (1)由ρsinθ=y,ρcosθ=x,能求出曲线C的直角坐标方程.
(2)求出直线l的普通方程,C到l的距离,利用勾股定理,可得线段AB的长度.

解答 解:(1)圆C的极坐标方程为ρ2-4ρsinθ-2=0,化为直角坐标方程为x2+y2-4y-2=0…(4分)
(2)直线l的普通方程为x-y+4=0…(6分)
又圆心C(0,2),半径$r=\sqrt{6}$,∴C到l的距离为$\frac{|2|}{{\sqrt{2}}}=\sqrt{2}$,
∴AB=$2\sqrt{6-2}$=4.…(10分)

点评 本题考查曲线的直角坐标方程的求法,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下说法正确的是(  )
A.1是集合N中最小的数B.0是集合Z中最小的数
C.x-3=0的解集是有限集D.长江中的鱼所组成的集合是无限集

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,等腰三角形ABC,AB=AC=2,∠BAC=120°.E,F分别为边AB,AC上的动点,且满足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分别是EF,BC的中点,则|MN|的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用0,1,2,3,4组成的各位数字不重复的所有的四位数的和是259980.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线$l:\left\{{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}}\right.$(t为参数)恒过椭圆$C:\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}}\right.$(φ为参数)在右焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设PH⊥平面ABC,且PA,PB,PC相等,则H是△ABC的(  )
A.内心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2},x∈R$.
(Ⅰ)求该函数的周期和最大值;
(Ⅱ)该函数的图象经过怎样的平移和伸缩变换可以得到y=sinx(x∈R)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α,β为锐角,$sinα=\frac{{\sqrt{2}}}{10},sinβ=\frac{{\sqrt{10}}}{10}$,则cos2β=$\frac{4}{5}$,α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,a1=2,an+1-an=2n,则数列的通项an=2n

查看答案和解析>>

同步练习册答案