分析 由条件可得S=$\frac{1}{4}$(a2+b2)=$\frac{1}{2}$ab•sinC,可得sinC=$\frac{{a}^{2}+{b}^{2}}{2ab}$≥1.再由sinC≤1,求得sinC=1,故有C=90°,且a=b,由此即可判断△ABC是等腰直角三角形.
解答 解:在△ABC中,a,b是它的两边长,S是△ABC的面积,S=$\frac{1}{4}$(a2+b2)=$\frac{1}{2}$ab•sinC,可得sinC=$\frac{{a}^{2}+{b}^{2}}{2ab}$≥1.
再由sinC≤1,可得sinC=1,故有C=90°,且a=b,可得:△ABC是等腰直角三角形,
故答案为:等腰直角三角形.
点评 本题主要考查了三角型的面积公式,正弦函数的值域,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若ac>bc⇒a>b | B. | 若a2>b2⇒a>b | C. | 若$\frac{1}{a}>\frac{1}{b}⇒a<b$ | D. | 若$\sqrt{a}<\sqrt{b}⇒{a^3}<{b^3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3+2$\sqrt{2}$ | D. | 3-2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com