精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+1\\;x≤0}\\{x+\frac{1}{4x}\\;x>0}\end{array}\right.$,若函数y=g[f(x)]-a有4个零点,则实数a的取值范围是[1,$\frac{5}{4}$).

分析 由题意可得函数y=g[f(x)]与函数y=a有4个交点,结合图象可得实数a的取值范围

解答 解:由题意可得函数y=g[f(x)]与函数y=a有4个交点,如图所示:

结合图象可得 1≤a<$\frac{5}{4}$,
故答案为[1,$\frac{5}{4}$).

点评 本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:选择题

函数的定义域为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题

已知等差数列中,,则的值是( )

A.15 B.30 C.31 D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=|2x-1|-ax-3(a是常数,a∈R)恰有两个不同的零点,则a的取值范围为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点P在圆x2+(y-2)2=$\frac{1}{4}$上移动,点Q在椭圆x2+4y2=4上移动,则|PQ|的最大值为$\frac{1}{2}$+$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(cosα,sinα),其中x,y,α∈R,若|$\overrightarrow{a}$|=9|$\overrightarrow{b}$|且$\overrightarrow{a}•\overrightarrow{b}$≤λ2+1恒成立,则实数λ的取值范围是(  )
A.-2$\sqrt{2}$≤λ≤2$\sqrt{2}$B.λ≤-2$\sqrt{2}$或λ≥2$\sqrt{2}$C.λ≥2$\sqrt{2}$D.λ≤-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=sin(ωx+$\frac{π}{6}$)的图象关于直线x=$\frac{π}{6}$对称,则ω的值是6k+2,k∈Z,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某校的体育场东侧有4个门,西侧有4个门,某同学要去体育场晨练,则他进出门的方案有(  )
A.16种B.8种C.32种D.64种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.椭圆$\frac{x^2}{5}+\frac{y^2}{9}=1$的焦距是(  )
A.4B.$\sqrt{14}$C.8D.$2\sqrt{14}$

查看答案和解析>>

同步练习册答案