精英家教网 > 高中数学 > 题目详情
14.连续抛掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.
(Ⅰ)写出这个试验的所有基本事件;
(Ⅱ)求事件“恰有一枚正面向上”的概率.
(Ⅲ)求事件“至少有两枚正面向上”的概率.

分析 (Ⅰ)利用列举法能写出这个试验的所有基本事件.
(Ⅱ)记“恰有一枚正面向上”为事件A,事件A所包含的基本事件数为3,由此能求出事件“恰有一枚正面向上”的概率.
(Ⅲ)记“至少有两枚正面向上”为事件B,则事件B所包含的基本事件数为4,由此能求出事件“至少有两枚正面向上”的概率.

解答 解:(Ⅰ)这个试验的基本事件为:
(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),
(反,正,反),(反,反,正),(反,反,反),共8个.…3分
(Ⅱ)记“恰有一枚正面向上”为事件A,
则事件A所包含的基本事件数为3,
所以事件“恰有一枚正面向上”的概率$P(A)=\frac{3}{8}$.…6分
(Ⅲ)记“至少有两枚正面向上”为事件B,
则事件B所包含的基本事件数为4,
所以事件“至少有两枚正面向上”的概率$P(B)=\frac{4}{8}=\frac{1}{2}$.…9分.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AA1=AB=2,E,F分别是CC1,BC的中点.
(1)求证:平面AB1F⊥平面AEF;
(2)求点C到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且a1=2,an+1=Sn,n∈N*
(1)写出数列{an}的第5项a5=16;
(2)已知等差数列{bn}中,有b2=a1,b3=a3,设cn=$\frac{b_n}{a_n}$,记数列{cn}的前n项和为Tn,求证:Tn<4(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算多项式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4时的值时,运算总次数为(  )
A.11B.12C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个袋中装有3个红球和1个白球,现从袋中取出1球,然后放回袋中再取出一球,则两次取出的球颜色相同的概率是$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线 C1:y=x2与曲线 C2:y=aex(a≠0)存在公共切线,则a的取值范围为(-∞,0)∪(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线y=3x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有公共点,则双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{10})$B.$(\sqrt{10},+∞)$C.$({1,\sqrt{10}}]$D.$[{\sqrt{10}}\right.,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用X表示未来3天内日销售量不低于8吨的天数,求随机变量X的分布列及数学期望.

查看答案和解析>>

同步练习册答案