分析 (1)由点A(2,8)在抛物线y2=2px,(p>0)上,利用待定系数法能求出抛物线方程.
(2)由已知条件知F(8,0)是线段AM的定比分点,且$\frac{AF}{FM}$=2,由此能求出点M的坐标.
解答 解:(1)∵点A(2,8)在抛物线y2=2px,(p>0)上,![]()
∴64=4p,解得p=16,
∴抛物线方程为y2=32x,焦点F的坐标为F(8,0).
(2)如图,∵F(8,0)是△ABC的重心,M是BC中点,
∴F是线段AM的定比分点,且$\frac{AF}{FM}$=2,
设点M的坐标为(x3,y3),
则$\frac{2+2{x}_{3}}{1+2}$=8,$\frac{8+2{y}_{3}}{1+2}$=0,
解得x3=11,y3=-4,
∴点M的坐标为M(11,-4).
点评 本题考查抛物线方程的求法,考查线段中点坐标的求法,解题时要认真审题,注意定比分点公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,c>d,则ac>bd | B. | 若ac>bc,则a>b | ||
| C. | 若a>b,则$\frac{1}{a}<\frac{1}{b}$ | D. | 若a>b,c<d,则a-c>b-d |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com