【题目】在平面直角坐标系
中,圆
的参数方程为
(
是参数,
是大于0的常数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆
的极坐标方程和圆
的直角坐标方程;
(2)分别记直线
:
,
与圆
、圆
的异于原点的交点为
,
,若圆
与圆
外切,试求实数
的值及线段
的长.
【答案】(1)圆
的极坐标方程为
,
的直角坐标方程为
(2)
,![]()
【解析】
(1)利用
消去参数
,求得圆
的普通方程,进而转化为极坐标方程.利用
,
以及两角差的余弦公式,将圆
的极坐标方程转化为直角坐标方程.
(2)先求得两个圆的圆心和半径,利用两圆外切,圆心距等于两圆半径之和列方程,解方程求得
的值.将
分别代入
的极坐标方程,利用
的几何意义,求得线段
的长.
(1)圆
:
(
是参数)消去参数
,
得其普通方程为
,
将
,
代入上式并化简,
得圆
的极坐标方程为
.
由圆
的极坐标方程
,得
.
将
,
,
代入上式,
得圆
的直角坐标方程为
.
(2)由(1)知圆
的圆心
,半径
;圆
的圆心
,半径
,
,
∵圆
与圆
外切,
∴
,解得
,
即圆
的极坐标方程为
,
将
代入
,得
,
得
,
将
代入
,得
,得
,
故
.
科目:高中数学 来源: 题型:
【题目】设
,
,…,
为1,2,…,10的一个排列,则满足对任意正整数m,n,且
,都有
成立的不同排列的个数为( )
A.512B.256C.255D.64
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,椭圆
:
的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为坐标原点. 设过点
的动直线
与
相交于
两点.
(1)求
的方程;
(2)是否存在这样的直线
,使得
的面积为
,若存在,求出
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 C 经过点 (2,3),它的渐近线方程为 y = ±
.椭圆 C1与双曲线 C有相同的焦点,椭圆 C1的短轴长与双曲线 C 的实轴长相等.
(1)求双曲线 C 和椭圆 C1 的方程;
(2)经过椭圆 C1 左焦点 F 的直线 l 与椭圆 C1 交于 A、B 两点,是否存在定点 D ,使得无论 AB 怎样运动,都有∠ADF = ∠BDF ?若存在,求出 D 点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1、F2分别为椭圆C:
=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=
,△BF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的离心率
,左、右焦点分别是
、
,且椭圆上一动点
到
的最远距离为
,过
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的标准方程;
(2)当
以
为直角时,求直线
的方程;
(3)直线
的斜率存在且不为0时,试问
轴上是否存在一点
使得
,若存在,求出
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标
来衡量产品的质量.当
时,产品为优等品;当
时,产品为一等品;当
时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标
的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.
![]()
(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;
(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为
元,求
的分布列与数学期望;
(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是
,方格图上标有第0格、第1格、第2格、……、第50格.机器人开始在第0格,客户每掷一次硬币,机器人向前移动一次,若掷出正面,机器人向前移动一格(从
到
),若掷出反面,机器人向前移动两格(从
到
),直到机器人移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,若机器人停在“胜利大本营”,则可获得优惠券.设机器人移到第
格的概率为
,试证明
是等比数列,并解释此方案能否吸引顾客购买该款产品.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com