【题目】设
,
,…,
为1,2,…,10的一个排列,则满足对任意正整数m,n,且
,都有
成立的不同排列的个数为( )
A.512B.256C.255D.64
科目:高中数学 来源: 题型:
【题目】已知曲线
,
相邻对称轴之间的距离为
,且函数
在
处取得最大值,则下列命题正确的个数为( )
①当
时,m的取值范围是
;②将
的图象向左平移
个单位后所对应的函数为偶函数;③函数
的最小正周期为
;④函数
在区间
上有且仅有一个零点.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)存在实数
使
;
(2)直线
是函数
图象的一条对称轴;
(3)
(
)的值域是
;
(4)若
,
都是第一象限角,且
,则
.
其中正确命题的序号为( )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,等腰梯形
中,
,
,
,
为
中点,
与
交于点
,将
沿
折起,使点
到达点
的位置(
平面
).
![]()
(1)证明:平面
平面
;
(2)若
,试判断线段
上是否存在一点
(不含端点),使得直线
与平面
所成角的正弦值为
,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,已知
,
对任意
都成立,数列
的前n项和为
.
(1)若
是等差数列,求k的值;
(2)若
,
,求
;
(3)是否存在实数k,使数列
是公比不为1的等比数列,且任意相邻三项
,
,
按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记矩阵
中的第
行第
列上的元素为
,现对矩阵
中的元素按如下算法所示的步骤作变动(直到不能变动为止):若
,则
,
,
,若
,则不变动,这样得到矩阵B,再对矩阵B中的元素按如下算法所示的步骤作变动(直到不能变动为止):若
,则
,
,
;若
,则不变动,这样得到矩阵
,则
________;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
![]()
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
的参数方程为
(
是参数,
是大于0的常数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆
的极坐标方程和圆
的直角坐标方程;
(2)分别记直线
:
,
与圆
、圆
的异于原点的交点为
,
,若圆
与圆
外切,试求实数
的值及线段
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com