【题目】如图,某大型景区有两条直线型观光路线
,
,
,点
位于
的平分线上,且与顶点
相距1公里.现准备过点
安装一直线型隔离网
(
分别在
和
上),围出三角形区域
,且
和
都不超过5公里.设
,
(单位:公里).
![]()
(Ⅰ)求
的关系式;
(Ⅱ)景区需要对两个三角形区域
,
进行绿化.经测算,
区城每平方公里的绿化费用是
区域的两倍,试确定
的值,使得所需的总费用最少.
【答案】(Ⅰ)
;(Ⅱ)当
,
(单位:公里)时,所需的总费用最少..
【解析】试题分析:(Ⅰ) 由题意得
,利用面积公式及条件可得
(其中
);
(Ⅱ)设
区域每平方公里的绿化费用为
(
为常数),两区域总费用为
,则有
,记
,由(Ⅰ)可知
,即
,
用均值不等式求最值即可.
试题解析:
(Ⅰ)解法一:由题意得
,
故
,
即
,
所以
(其中
).
解法二:在
中,由余弦定理得:
,
则
,同理可得
,
在
中,由正弦定理得:
,
在
中,由正弦定理得:
,
因为
,两式相除可得
,
化简得
(其中
,
).
(Ⅱ)设
区域每平方公里的绿化费用为
(
为常数),两区域总费用为
,
则有
,
记
,由(Ⅰ)可知
,即
,
则
,
当且仅当
,即
解得
此时等号成立.
答:当
,
(单位:公里)时,所需的总费用最少.
科目:高中数学 来源: 题型:
【题目】如图,由直三棱柱
和四棱锥
构成的几何体中,
,平面
平面
.
![]()
(Ⅰ)求证:
;
(Ⅱ)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方形
的边长为
,点
分别在边
上,
与
的交点为
,
,现将
沿线段
折起到
位置,使得
.
![]()
(1)求证:平面
平面
;
(2)求五棱锥
的体积;
(3)在线段
上是否存在一点
,使得
平面
?若存在,求
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的左焦点是
,离心率为
,且
上任意一点
到
的最短距离为
.
(1)求
的方程;
(2)过点
的直线
(不过原点)与
交于两点
、
,
为线段
的中点.
(i)证明:直线
与
的斜率乘积为定值;
(ii)求
面积的最大值及此时
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
,过椭圆右焦点
的直线l与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)若
,求直线l的方程;
(3)若
是椭圆C经过原点O的弦,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题
:函数
的定义域为
;命题
:关于
的方程
有实根.
(1)如果
是真命题,求实数
的取值范围.
(2)如果命题“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.
![]()
(1)求n的值;
(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com