精英家教网 > 高中数学 > 题目详情
(1)已知扇形OAB的圆心角α为120°,半径为6,求扇形弧长及所含弓形的面积;
(2)若
4sinα-2cosα
5cosα+3sinα
=10,则tanα的值为.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)利用弧长公式求出扇形的弧长即可;由扇形面积减去三角形AOB面积求出弓形的面积即可;
(2)已知等式左边分子分母除以cosα,利用同角三角函数间基本关系化简,整理即可求出tanα的值.
解答: 解:(1)∵扇形OAB的圆心角α为120°,半径为6,
∴l=
120π×6
180
=4π;S弓形=S扇形OAB-S△OAB=
120π×62
360
-
1
2
×6×6×sin120°=12π-9
3

(2)由已知等式变形得:
4tanα-2
5+3tanα
=10,
整理得:tanα=-2.
点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+ax+a-3.
(1)求证:函数f(x)的图象与x轴有两个不同的交点;
(2)若函数f(x)的一个零点大于1,另一个零点小于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦距为2
5
,过M(1,1)斜率为
2
3
直线l交曲线C于A,B且M是线段AB的中点,则双曲线C的标准方程为(  )
A、
x2
3
-
y2
2
=1
B、
x2
3
-
3y2
2
=1
C、
x2
3
-2y2=1
D、
x2
3
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂2008年的产值为a万元,并且保持以每年8%的速度增长,则2012年的产值为(  )万元.
A、a(1+5×8%)
B、a(1+4×8%)
C、a(1+8%)5
D、a(1+8%)4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={x|-2<x<5},N={x|a+1≤x≤2a-1}
(Ⅰ)是否存在实数a使得M∩N=M,若不存在,请说明理由,若存在,求实数a的取值范围;
(Ⅱ)是否存在实数a使得M∪N=M,若不存在,请说明理由,若存在,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|z|=1,求|z2+z+4|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2|X-1|的图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+1,
(1)求在区间[1,2]上f(x)的平均变化率;
(2)求f(x)在x=1处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在水平放置的边长为40cm的正方形轨道模型上,质点甲从A点出发以8cm/s的速度沿点A-B-C方向运动,同时另一质点乙从B点出发以10cm/s的速度沿点B-C-D方向运动.
(1)试将甲、乙两点连线和折线A-B-C-D围成的封闭图形的面积S表示为时间t(0≤t≤8)的函数;
(2)在第(1)问的条件下,求出封闭图形面积S的最大值.

查看答案和解析>>

同步练习册答案