【题目】已知函数存在唯一极值点。
(I)求的取值范围;
(II)证明:函数与的值域相同。
【答案】(I);(II)详见解析.
【解析】试题分析:
(Ⅰ)由题意可得: , ,
分类讨论:当时, 在内有唯一极值点;
当时,若, 无极值点,若, 有两个极值点,不合题意;则;
(Ⅱ)由(Ⅰ)知, ,设,则在上单减,在上单增, 的值域为,则原问题等价于,即,整理变形为,导函数单增,则原问题等价于,据此命题得证.
试题解析:
(Ⅰ), ,当时, ,
故在上单调递增,又时, , ,
故在内有唯一实根,即在内有唯一极值点;
当时,由得,故在上单增,在上单减,
若则恒成立,此时无极值点,若,
又时, 时,此时有两个极值点;
综上, ;
(Ⅱ)由(Ⅰ)知, ,设即,
则在上单减,在上单增, 的值域为,
要使与的值域相同,只需,即,
即,又,故即,
故只需证,又单增,所以要证即证,
而,故得证.
科目:高中数学 来源: 题型:
【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.
(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;
(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.
注:方差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂为预测产品的回收率,需要研究它和原料有效成分含量之间的相关关系,现收集了4组对照数据。
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(Ⅰ)请根据相关系数的大小判断回收率与之间是否存在高度线性相关关系;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测当时回收率的值.
参考数据:
1 | 0 | 其他 | |||
相关关系 | 完全相关 | 不相关 | 高度相关 | 低度相关 | 中度相关 |
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是__________(填序号)
①命题“,有”的否定是“”,有”;
②已知, , ,则的最小值为;
③设,命题“若,则”的否命题是真命题;
④已知, ,若命题为真命题,则的取值范围是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若由方程x2-y2=0和x2+(y-b)2=2所组成的方程组至多有两组不同的实数解,则实数b的取值范围是( )
A. b≥2或b≤-2 B. b≥2或b≤-2
C. -2≤b≤2 D. -2≤b≤2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为,现采用随机模拟的方法估计该运动员三次投篮都命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
162 966 151 525 271 932 592 408 569 683
471 257 333 027 554 488 730 163 537 989
据此估计,该运动员三次投篮都命中的概率为
A. 0.15 B. 0.2 C. 0.25 D. 0.35
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com