精英家教网 > 高中数学 > 题目详情
(13分)设是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;(2)设,若存在,使得成立,求的取值范围。
(1)    (2)
解:(1)∵ 
 
由题意得:,即 

 ∵是函数的一个极值点
,即 故的关系式为 
(Ⅰ)当时,,由得单增区间为:
得单减区间为:
(Ⅱ)当时,,由得单增区间为:
得单减区间为:; 6分
(2)由(1)知:当时,上单调递增,在上单调递减,
上的值域为 易知上是增函数
上的值域为 由于
又∵要存在,使得成立,
∴必须且只须解得: 所以:的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)(1)求的解析式;(2)设,求证:当时,;(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=x|x2-a| (a∈R),(1)当a≤0时,求证函数f(x)在(-∞,+∞)上是增函数;(2)当a=3时,求函数f(x)在区间[0,b]上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=x 3-2x 2+mx, 当x=时, 函数取得极大值, 则m的值为 (  )
A. 3B. 2C. 1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
设函数f(x)=x3+ax2-3x+b(a,b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2(1)求a的值及函数f(x)的单调区间; (2)若存在x0∈(x1,x2),使得f(x0)=0,求b的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
x
1+x2
,则f′(-1)=(  )
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间是                          (   )
A.B.(0,3)C.(1,4)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各式中正确的是(      )
A.B.
C.D.

查看答案和解析>>

同步练习册答案