分析 (1)利用线面垂直的判定定理即可证明先证BD⊥面SAC,
(2)根据二面角的平面角的定义得到∠EDC是所求的二面角的平面角,利用Rt△SAC与Rt△EDC相似求出∠EDC即可.
解答
证明:(1)由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知SC⊥DE,BE∩DE=E,
∴SC⊥面BDE,
∴SC⊥BD.
又∵SA⊥底面ABC,BD在底面ABC上,
∴SA⊥BD.
而SC∩SA=S,∴BD⊥面SAC.
(2)∵DE=面SAC∩面BDE,DC=面SAC∩面BDC,
∴BD⊥DE,BD⊥DC.
∴∠EDC是所求的二面角的平面角.
∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.
设SA=a,则AB=a,BC=SB=$\sqrt{2}$a
∵AB⊥BC,∴AC=$\sqrt{3}a$,在Rt△SAC中tan∠ACS=$\frac{\sqrt{3}}{3}$
∴∠ACS=30°.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
点评 本题主要考查了平面与平面之间的位置关系以及二面角的求解,考查空间想象能力、运算能力和推理论证能力,利用二面角的定义找出二面角的平面角是解决本题的关键..
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | (-∞,1) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com