精英家教网 > 高中数学 > 题目详情
4.已知点A(-3,-2)在抛物线C:x2=2py的准线上,过点A的直线与抛物线C在第二象限相切于点B,记抛物线C的焦点为F,则直线BF的斜率是$-\frac{3}{4}$.

分析 由题意先求出准线方程x=-2,再求出p,从而得到抛物线方程,设出切点B(m,$\frac{{m}^{2}}{8}$)(m<0),对抛物线方程求导,可得切线的斜率,再由两点的斜率公式,解方程可得m,即有B的坐标,运用两点求斜率公式即可得到所求直线BF的斜率.

解答 解:∵点A(3,-2)在抛物线C:x2=2py的准线上,
即准线方程为:y=-2,
∴p>0,则-$\frac{p}{2}$=-2,即p=4,
∴抛物线C:x2=8y,即$y=\frac{1}{8}{x}^{2}$.
设B(m,$\frac{{m}^{2}}{8}$)(m<0),
由y=$\frac{1}{8}{x}^{2}$的导数为y′=$\frac{1}{4}x$,
可得切线的斜率为k=$\frac{m}{4}$,
即有$\frac{m}{4}=\frac{\frac{{m}^{2}}{8}+2}{m+3}$,化为m2+6m-16=0,
解得m=-8,或m=2(舍去),
可得B(-8,8),又F(0,2),
则直线BF的斜率是$\frac{8-2}{-8}=-\frac{3}{4}$.
故答案为:$-\frac{3}{4}$.

点评 本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知命题“(¬p)∨(¬q)”是假命题,给出下列四个结论:
①命题“p∧q”是真命题;       ②命题“p∧q”是假命题;
③命题“p∨q”是假命题;       ④命题“p∨q”是真命题.
其中正确的结论为(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:关于x的函数y=(a-1)x为增函数;命题q:不等式-x2+2x-2≤a对一切实数均成立.若命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆x2+(y-2)2=4的圆心与抛物线y2=8x的焦点关于直线l对称,则直线l的方程为(  )
A.x-y=0B.x-y+2=0C.x+y+2=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在(${\frac{1}{{\sqrt{x}}}$-3)n,(n∈{N*)的展开式所有项系数的和为16,求$\frac{1}{x}$的系数为54.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}为等比数列,a1+a10=10,a5•a6=25,则a2+a9=(  )
A.10B.5C.-5D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-kx+(2k-3).
(1)若k=$\frac{3}{2}$时,解不等式f(x)>0;
(2)若f(x)>0对任意x∈R恒成立,求实数k的取值范围;
(3)若函数f(x)两个不同的零点均大于$\frac{5}{2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.小张从点A出发,向东偏北60°方向位移了6km到达点B,再向正西方向位移了6km到达了点C,则点C相对于点A位置向量是是$\overrightarrow{AC}$,模长是6km,方向是北偏西30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,三个内角A、B、C所对的边分别是a,b,c,已知A=$\frac{3π}{4}$,b=3$\sqrt{2}$,c=6
(1)求a及sinB的值;
(2)点D在BC边上,若△ABD的面积为6,求BD的长.

查看答案和解析>>

同步练习册答案