精英家教网 > 高中数学 > 题目详情
10.某几何体的三视图如图所示.则其体积积为(  )
A.B.$\frac{17}{2}π$C.D.$\frac{15}{2}π$

分析 几何体为两个尖头圆柱的组合体.它们可以组合成高为8的圆柱.

解答 解:由三视图可知几何体为两个尖头圆柱的组合体,它们可以组成高为8的圆柱,
圆柱的底面半径为1,
所以几何体的体积为π×12×8=8π.
故选A.

点评 本题考查了空间几何体的三视图和体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数x2=4y的焦点是F,直线l与抛物线交于A,B两点.
(Ⅰ)若直线l过焦点F且斜率为1,求线段AB的长;
(Ⅱ)若直线l与y轴不垂直,且|FA|+|FB|=3.证明:线段AB的中垂线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图程序中所有的输出结果之和为210.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是100cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个空间几何体的三视图如图所示,则该几何体的表面积为50$\sqrt{3}$+50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{\sqrt{{x}^{4}-3{x}^{2}+9}-\sqrt{{x}^{4}-4{x}^{2}+9}}{x}$(x>0)
(1)将f(x)化成$\frac{1}{\sqrt{{g}^{2}(x)+a}+\sqrt{{g}^{2}(x)+b}}$(a,b是不同的整数)的形式;
(2)求f(x)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R,若关于x的不等式f(x)≥g(x)的解的最小值为2,则a的取值范围是a≤-2或a>-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,则a2016的值为$\frac{1}{2014}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+b(a,b∈R).
(I)a=-4时,若关于x的方程|f(x)|=1在区间[0,4]内有四个不同的根,求b的取值范围;
(Ⅱ)记函数g(x)=|f(x)|在区间[0,4]上的最大值为M(a,b),求证:当一8≤a≤0时,有M(a,b)≥$\frac{1}{8}$a2

查看答案和解析>>

同步练习册答案