分析 (1)采取分子有理化,以及完全平方式即可求出,
(2)设h(x)=(x-$\frac{3}{x}$)2,x>0当x=$\frac{3}{x}$时,即x=$\sqrt{3}$时,h(x)有最小值,则f(x)有最大值,代值计算即可.
解答 解:(1)f(x)=$\frac{\sqrt{{x}^{4}-3{x}^{2}+9}-\sqrt{{x}^{4}-4{x}^{2}+9}}{x}$=$\frac{{x}^{4}-3{x}^{2}+9-{x}^{4}+4{x}^{2}-9}{{x}^{2}•\frac{1}{x}(\sqrt{{x}^{4}-3{x}^{2}+9}+\sqrt{{x}^{4}-4{x}^{2}+9})}$=$\frac{1}{\sqrt{{x}^{2}+\frac{9}{{x}^{2}}-3}+\sqrt{{x}^{2}+\frac{9}{{x}^{2}}-4}}$=$\frac{1}{\sqrt{(x-\frac{3}{x})^{2}+3}+\sqrt{(x-\frac{3}{x})^{2}+2}}$
(2)设h(x)=(x-$\frac{3}{x}$)2,x>0
当x=$\frac{3}{x}$时,即x=$\sqrt{3}$时,h(x)有最小值,则f(x)有最大值,
∴f(x)max=f($\sqrt{3}$)=$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}$-$\sqrt{2}$.
点评 本题考查了函数的化简与求值,关键是化简,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\sqrt{2}$) | B. | (1,$\sqrt{2}$) | C. | ($\frac{\sqrt{2}}{2}$,1) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{9}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com