精英家教网 > 高中数学 > 题目详情
4.已知x,y满足不等式$\left\{\begin{array}{l}{x≥0}\\{x-y+2≤0}\\{2x+y-5≤0}\end{array}\right.$,则z=(x-1)2+y2的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

分析 画出满足条件的平面区域,结合z=(x-1)2+y2的几何意义表示平面区域内的点到A(1,0)的距离,求出其最小值即可.

解答 解:画出满足条件的平面区域,如图示:

z=(x-1)2+y2的几何意义表示平面区域内的点到A(1,0)的距离,
显然|AB|的距离最小,
|AB|=$\sqrt{1+4}$=$\sqrt{5}$,∴z=5,
故选:D.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.给定直线m:y=2x-16,抛物线:y2=2px(p>0).
(1)当抛物线的焦点在直线m上时,确定抛物线的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线上,且点A的纵坐标y=8,△ABC的重心恰在抛物线的焦点上,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{\sqrt{{x}^{4}-3{x}^{2}+9}-\sqrt{{x}^{4}-4{x}^{2}+9}}{x}$(x>0)
(1)将f(x)化成$\frac{1}{\sqrt{{g}^{2}(x)+a}+\sqrt{{g}^{2}(x)+b}}$(a,b是不同的整数)的形式;
(2)求f(x)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C,D四点任意三点不共线
(1)若|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{BC}$|=|$\overrightarrow{AC}$|,求$\overrightarrow{CB}$+$\overrightarrow{CA}$与$\overrightarrow{AC}$的夹角
(2)若$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且|$\overrightarrow{AB}$-$\overrightarrow{AD}$|=|$\overrightarrow{AC}$|=10,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,则a2016的值为$\frac{1}{2014}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:$\frac{sin(180°+α)cos(180°+α)}{cos(540°+α)tan(α-540°)}$=-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线mx-y-2008=0的倾斜角的最大值为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,P在椭圆上,且△PF1F2的面积为$\frac{{\sqrt{2}}}{2}{b^2}$,则cos∠F1PF2=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案