精英家教网 > 高中数学 > 题目详情
9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

分析 有放回的取两次球,其中白球数η的取值为0(两次均取黑球),1(一次取白球,另一次取黑球),2(两次均取白球).分别求出相应的概率,由此能求出η的分布列.

解答 解:有放回的取两次球,其中白球数η的取值为0(两次均取黑球),1(一次取白球,另一次取黑球),2(两次均取白球).
P(η=0)=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$,
P(η=1)=$\frac{1}{2}×\frac{1}{2}+\frac{1}{2}×\frac{1}{2}$=$\frac{1}{2}$,
P(η=2)=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$.
∴η的分布列为:

 η 2
$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ 
故答案为:
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

点评 本题考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图是某空间几何体的三视图,则该几何体的体积为4-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)中,c2=a2+b2,直线x=-$\frac{{a}^{2}}{c}$与双曲线的两条渐近线交于A,B两点,且左焦点在以AB为直径的圆内,则该双曲线的离心率的取值范围(  )
A.(0,$\sqrt{2}$)B.(1,$\sqrt{2}$)C.($\frac{\sqrt{2}}{2}$,1)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.实数x,y满足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-1}$的最小值是(  )
A.-5B.-$\frac{1}{2}$C.$\frac{1}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x,y满足不等式$\left\{\begin{array}{l}{x≥0}\\{x-y+2≤0}\\{2x+y-5≤0}\end{array}\right.$,则z=(x-1)2+y2的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等比数列{an}中,a3a7=8,a4+a6=6,则a2+a8=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}的前n项和Sn=n2+2n(n∈N*),若m-n=5,则am-an=(  )
A.2B.5C.-5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别为A,B,C所对应的边,若acosB+bcosA=$\frac{c}{2cosC}$.
(Ⅰ)求C;
(Ⅱ)若$\overrightarrow{m}$=($\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$,cosB),$\overrightarrow{n}$=(1,sinA),求$\overrightarrow{m}$$•\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正三棱椎的棱长为3,则它的内切球的体积为(  )
A.$\frac{{\sqrt{6}}}{8}π$B.$\frac{{\sqrt{6}}}{4}π$C.$\frac{{\sqrt{3}}}{4}π$D.$\frac{{\sqrt{3}}}{12}π$

查看答案和解析>>

同步练习册答案