精英家教网 > 高中数学 > 题目详情
17.实数x,y满足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-1}$的最小值是(  )
A.-5B.-$\frac{1}{2}$C.$\frac{1}{2}$D.5

分析 作出平面区域,则$\frac{y-1}{x-1}$表示过点(1,1)的直线的斜率,根据平面区域观察最优解.

解答 解:作出平面区域如图所示:

由平面区域可知过P(1,1)的直线过点A时斜率最小,
解方程组$\left\{\begin{array}{l}{x-y+1=0}\\{2x+y-2=0}\end{array}\right.$得x=$\frac{1}{3}$,y=$\frac{4}{3}$.
∴$\frac{y-1}{x-1}$的最小值为$\frac{\frac{4}{3}-1}{\frac{1}{3}-1}$=-$\frac{1}{2}$.
故选:B.

点评 本题考查了简单的线性规划,根据可行域寻找最优解是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图几何体E-ABCD是四棱锥,△ABD为正三角形,∠BCD=120°,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD.
(1)求证:平面BED⊥平面AEC;
(2)M是棱AE的中点,求证:DM∥平面EBC;
(3)求二面角D-BM-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四边形ACDF为边长为2的正方形,四边形CBED为直角梯形,∠DCB=∠CDE=90°,M为AB的中点,CB=3,AB=$\sqrt{5}$,DE=1.
(I)证明:平面CBED⊥平面ABC
(Ⅱ)求二面角F-EB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.tan$\frac{π}{8}$+$\frac{1}{tan\frac{π}{8}}$=(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C,D四点任意三点不共线
(1)若|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{BC}$|=|$\overrightarrow{AC}$|,求$\overrightarrow{CB}$+$\overrightarrow{CA}$与$\overrightarrow{AC}$的夹角
(2)若$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且|$\overrightarrow{AB}$-$\overrightarrow{AD}$|=|$\overrightarrow{AC}$|=10,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${∫}_{0}^{1}$$\frac{1}{(x+1)(x+2)(x+3)}$dx=$\frac{1}{2}$(5ln2-3ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=sinx-$\sqrt{3}$cosx(1)最大、小值;(2)最小正周期;(3)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点(1,2)是函数f(x)=ax(a>0,且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(1)求数列{an}的通项公式;
(2)求数列{an}前2016项中的第3项,第6项,…,第3k项删去,求数列{an}前2016项中剩余项的和.

查看答案和解析>>

同步练习册答案