精英家教网 > 高中数学 > 题目详情
18.已知点(1,2)是函数f(x)=ax(a>0,且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(1)求数列{an}的通项公式;
(2)求数列{an}前2016项中的第3项,第6项,…,第3k项删去,求数列{an}前2016项中剩余项的和.

分析 (1)把点(1,2)代入函数f(x)=ax,得a=2.可得:Sn=f(n)-1=2n-1,利用递推关系即可得出.
(2)由(1)知数列{an}为等比数列,公比为2,故其第3项,第6项,…,第2 016项也为等比数列,首项a3=23-1=4,公比23=8,a2016=22015=4×8672-1为其第672项,利用等比数列的前n项和公式即可得出.

解答 解:(1)把点(1,2)代入函数f(x)=ax,得a=2.
∴Sn=f(n)-1=2n-1,
当n=1时,a1=S1=21-1=1,
当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1
经验证可知n=1时,也适合上式,
∴an=2n-1.…(6分)
(2)由(1)知数列{an}为等比数列,公比为2,
故其第3项,第6项,…,第2 016项也为等比数列,首项a3=23-1=4,公比23=8,
a2016=22015=4×8672-1为其第672项,
∴此数列的和为$\frac{{4(1-{8^{672}})}}{1-8}=\frac{{4({2^{2016}}-1)}}{7}$,
又数列{an}的前2 016项和为${S_{2016}}=\frac{{1×(1-{2^{2016}})}}{1-2}={2^{2016}}-1$,
∴所求剩余项的和为(22016-1)-$\frac{{4({2^{2016}}-1)}}{7}$=$\frac{{3({2^{2016}}-1)}}{7}$.…(12分)

点评 本题考查了递推关系、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.实数x,y满足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-1}$的最小值是(  )
A.-5B.-$\frac{1}{2}$C.$\frac{1}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别为A,B,C所对应的边,若acosB+bcosA=$\frac{c}{2cosC}$.
(Ⅰ)求C;
(Ⅱ)若$\overrightarrow{m}$=($\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$,cosB),$\overrightarrow{n}$=(1,sinA),求$\overrightarrow{m}$$•\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个顶点为M(0,-1),离心率为$\frac{\sqrt{6}}{3}$,直线l:y=kx+m(k≠0)与椭圆C交于A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若存在关于过点M的直线,使得点A与点B关于该直线对称,求实数m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,用m表示△MAB的面积S,并判断S是否存在最大值.若存在,求出最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从1,2,…5这5个自然数中任意抽取2个数,抽到“至少有1个数是偶数”的概率为$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知,如图,等腰直角三角形ABC的直角边AC=BC=2,沿其中位线DE将平面ADE折起,使平面ADE⊥平面BCDE,得到四棱锥A-BCDE,设CD,BE,AE,AD的中点分别为M,N,P,Q.

(1)求证:M,N,P,Q四点共面;
(2)求证:平面ABC⊥平面ACD;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正三棱椎的棱长为3,则它的内切球的体积为(  )
A.$\frac{{\sqrt{6}}}{8}π$B.$\frac{{\sqrt{6}}}{4}π$C.$\frac{{\sqrt{3}}}{4}π$D.$\frac{{\sqrt{3}}}{12}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\sqrt{2}$<a<2,则函数f(x)=$\sqrt{{a}^{2}-{x}^{2}}$+|x|-2的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个正四棱柱的侧面展开图是一个边长为8cm的正方形,则它的体积是32cm2

查看答案和解析>>

同步练习册答案