6£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÒ»¸ö¶¥µãΪM£¨0£¬-1£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô´æÔÚ¹ØÓÚ¹ýµãMµÄÖ±Ïߣ¬Ê¹µÃµãAÓëµãB¹ØÓÚ¸ÃÖ±Ï߶Գƣ¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬ÓÃm±íʾ¡÷MABµÄÃæ»ýS£¬²¢ÅжÏSÊÇ·ñ´æÔÚ×î´óÖµ£®Èô´æÔÚ£¬Çó³ö×î´óÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃb=1£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨ II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬¼°Á½µãµÄ¾àÀ빫ʽ£¬»¯¼òÕûÀí£¬½â²»µÈʽ¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨III£©ÔËÓÃÁ½µãµÄ¾àÀ빫ʽºÍµãµ½Ö±ÏߵľàÀ룬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬Óɵ¼ÊýÅжϵ¥µ÷ÐÔ£¬¼ÆËã¼´¿ÉµÃµ½Ãæ»ýµÄ×îÖµÇé¿ö£®

½â´ð ½â£º£¨I£©ÓÉÍÖÔ²CµÄÒ»¸ö¶¥µãΪM£¨0£¬-1£©£¬¿ÉµÃb=1£¬
ÓÉÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬¼´$\frac{c}{a}=\frac{{\sqrt{6}}}{3}$£¬
ÓÖa2=b2+c2£¬½âµÃa2=3£¬
¼´ÓÐÍÖÔ²$C£º\frac{x^2}{3}+{y^2}=1$£»
£¨ II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ÓÉ$\left\{\begin{array}{l}{x^2}+3{y^2}=3\\ y=kx+m\end{array}\right.$
µÃ£¨3k2+1£©x2+6kmx+3m2-3=0
ËùÒÔ¡÷=£¨6km£©2-4£¨3k2+1£©£¨3m2-3£©£¾0£¬¼´ÓÐm2£¼3k2+1
¿ÉµÃ${x_1}+{x_2}=-\frac{6km}{{3{k^2}+1}}$£¬${x_1}{x_2}=\frac{{3{m^2}-3}}{{3{k^2}+1}}$£¬
${y_1}+{y_2}=\frac{2m}{{3{k^2}+1}}$£®
ÓÉA£¬B¹ØÓÚ¹ýµãM£¨0£¬-1£©µÄÖ±Ï߶Գƣ¬
¿ÉµÃ|MA|=|MB|£¬
¼´${x_1}^2+{£¨{y_1}+1£©^2}={x_2}^2+{£¨{y_2}+1£©^2}$£¬
£¨x2+x1£©£¨x2-x1£©+£¨y2+y1+2£©£¨y2-y1£©=0£¬
¼´ÓУ¨x2+x1£©+k£¨y2+y1+2£©=0£¬
$-\frac{6km}{{3{k^2}+1}}+£¨\frac{2m}{{3{k^2}+1}}+2£©k=0$£¬¼´Îª2m=3k2+1£¾1£¨k¡Ù0£©£¬
ÓÖ¡÷=12m£¨2-m£©£¾0£¬
¹Ê$\frac{1}{2}£¼m£¼2$£»
£¨III£©$|{AB}|=\sqrt{{{£¨{x_1}-{x_2}£©}^2}+{{£¨{y_1}-{y_2}£©}^2}}=\sqrt{1+{k^2}}\frac{{\sqrt{12m£¨2-m£©}}}{{3{k^2}+1}}$£¬
Aµ½l£ºy=kx+mµÄ¾àÀë$d=\frac{{|{m+1}|}}{{\sqrt{{k^2}+1}}}$£¬
Ôò${S_{¡÷MAB}}=\frac{1}{2}|{AB}|d$=$\frac{1}{2}¡Á\frac{{|{m+1}|\sqrt{12m£¨2-m£©}}}{2m}$£¬
ËùÒÔ${S^2}=\frac{3}{4}£¨3+\frac{2}{m}-{m^2}£©$£¬
Éè$f£¨m£©=3+\frac{2}{m}-{m^2}£¨\frac{1}{2}£¼m£¼2£©$£¬
Ôòµ¼Êý$f'£¨m£©=-2m-\frac{2}{m^2}£¼0$£¬
ËùÒÔf£¨m£©ÔÚ$£¨\frac{1}{2}£¬2£©$ÉÏÊǼõº¯Êý£¬
ËùÒÔÃæ»ýSÎÞ×î´óÖµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®tan$\frac{¦Ð}{8}$+$\frac{1}{tan\frac{¦Ð}{8}}$=£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®$\sqrt{2}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Çóº¯Êýf£¨x£©=sinx-$\sqrt{3}$cosx£¨1£©×î´ó¡¢Ð¡Öµ£»£¨2£©×îСÕýÖÜÆÚ£»£¨3£©µ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$ÊǼнÇΪ60¡ãµÄÁ½¸öµ¥Î»ÏòÁ¿£¬Ôò£¨2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$£©•£¨-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$£©=-$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®½¥¿ªÏß$\left\{\begin{array}{l}x=6£¨cosϕ+ϕsinϕ£©\\ y=6£¨sinϕ-ϕcosϕ£©\end{array}\right.£¨ϕΪ$Ϊ²ÎÊý£©µÄ»ùÔ²µÄÔ²ÐÄÔÚÔ­µã£¬°Ñ»ùÔ²µÄºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¨×Ý×ø±ê²»±ä£©µÃµ½µÄÇúÏߵĽ¹µã×ø±êΪ£¨¡À6$\sqrt{3}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÇø¼ä[0£¬6]ÉÏËæ»úȡһ¸öÊýx£¬Ôòʼþ¡°1¡Ü2x¡Ü5¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{4}$C£®$\frac{1}{3}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµã£¨1£¬2£©ÊǺ¯Êýf£¨x£©=ax£¨a£¾0£¬ÇÒa¡Ù1£©µÄͼÏóÉÏÒ»µã£¬ÊýÁÐ{an}µÄǰnÏîºÍSn=f£¨n£©-1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{an}ǰ2016ÏîÖеĵÚ3ÏµÚ6Ï¡­£¬µÚ3kÏîɾȥ£¬ÇóÊýÁÐ{an}ǰ2016ÏîÖÐÊ£ÓàÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Çóº¯Êýy=cos2x+2sinxµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèÊýÁÐ{an}£¨n=1£¬2£¬3¡­£©µÄǰnÏîºÍSnÂú×ãSn=2an-a3£¬ÇÒa1£¬a2+1£¬a3³ÉµÈ²îÊýÁУ®
£¨¢ñ£©ÇóÊýÁеÄͨÏʽ£»  
£¨¢ò£©ÉèÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸