·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃb=1£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨ II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬¼°Á½µãµÄ¾àÀ빫ʽ£¬»¯¼òÕûÀí£¬½â²»µÈʽ¼´¿ÉµÃµ½ËùÇó·¶Î§£»
£¨III£©ÔËÓÃÁ½µãµÄ¾àÀ빫ʽºÍµãµ½Ö±ÏߵľàÀ룬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬Óɵ¼ÊýÅжϵ¥µ÷ÐÔ£¬¼ÆËã¼´¿ÉµÃµ½Ãæ»ýµÄ×îÖµÇé¿ö£®
½â´ð ½â£º£¨I£©ÓÉÍÖÔ²CµÄÒ»¸ö¶¥µãΪM£¨0£¬-1£©£¬¿ÉµÃb=1£¬
ÓÉÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬¼´$\frac{c}{a}=\frac{{\sqrt{6}}}{3}$£¬
ÓÖa2=b2+c2£¬½âµÃa2=3£¬
¼´ÓÐÍÖÔ²$C£º\frac{x^2}{3}+{y^2}=1$£»
£¨ II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ÓÉ$\left\{\begin{array}{l}{x^2}+3{y^2}=3\\ y=kx+m\end{array}\right.$
µÃ£¨3k2+1£©x2+6kmx+3m2-3=0
ËùÒÔ¡÷=£¨6km£©2-4£¨3k2+1£©£¨3m2-3£©£¾0£¬¼´ÓÐm2£¼3k2+1
¿ÉµÃ${x_1}+{x_2}=-\frac{6km}{{3{k^2}+1}}$£¬${x_1}{x_2}=\frac{{3{m^2}-3}}{{3{k^2}+1}}$£¬
${y_1}+{y_2}=\frac{2m}{{3{k^2}+1}}$£®
ÓÉA£¬B¹ØÓÚ¹ýµãM£¨0£¬-1£©µÄÖ±Ï߶Գƣ¬
¿ÉµÃ|MA|=|MB|£¬
¼´${x_1}^2+{£¨{y_1}+1£©^2}={x_2}^2+{£¨{y_2}+1£©^2}$£¬
£¨x2+x1£©£¨x2-x1£©+£¨y2+y1+2£©£¨y2-y1£©=0£¬
¼´ÓУ¨x2+x1£©+k£¨y2+y1+2£©=0£¬
$-\frac{6km}{{3{k^2}+1}}+£¨\frac{2m}{{3{k^2}+1}}+2£©k=0$£¬¼´Îª2m=3k2+1£¾1£¨k¡Ù0£©£¬
ÓÖ¡÷=12m£¨2-m£©£¾0£¬
¹Ê$\frac{1}{2}£¼m£¼2$£»
£¨III£©$|{AB}|=\sqrt{{{£¨{x_1}-{x_2}£©}^2}+{{£¨{y_1}-{y_2}£©}^2}}=\sqrt{1+{k^2}}\frac{{\sqrt{12m£¨2-m£©}}}{{3{k^2}+1}}$£¬
Aµ½l£ºy=kx+mµÄ¾àÀë$d=\frac{{|{m+1}|}}{{\sqrt{{k^2}+1}}}$£¬
Ôò${S_{¡÷MAB}}=\frac{1}{2}|{AB}|d$=$\frac{1}{2}¡Á\frac{{|{m+1}|\sqrt{12m£¨2-m£©}}}{2m}$£¬
ËùÒÔ${S^2}=\frac{3}{4}£¨3+\frac{2}{m}-{m^2}£©$£¬
Éè$f£¨m£©=3+\frac{2}{m}-{m^2}£¨\frac{1}{2}£¼m£¼2£©$£¬
Ôòµ¼Êý$f'£¨m£©=-2m-\frac{2}{m^2}£¼0$£¬
ËùÒÔf£¨m£©ÔÚ$£¨\frac{1}{2}£¬2£©$ÉÏÊǼõº¯Êý£¬
ËùÒÔÃæ»ýSÎÞ×î´óÖµ£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{2}$ | B£® | $\sqrt{2}$ | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com