分析 (I)利用等差数列与等比数列的通项公式即可得出;
(II)利用等比数列的前n项和公式即可得出.
解答 解:(Ⅰ) 由已知Sn=2an-a3,有an=Sn-Sn-1=2an-2an-1(n≥2),
即an=2an-1(n≥2)从而a2=2a1,a3=2a2=4a1,
又∵a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)
∴a1+4a1=2(2a1+1),解得a1=2.
∴数列{an}是首项为2,公比为2的等比数列,
故an=2n.
(Ⅱ)由(Ⅰ)得$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}}$,
∴Tn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一定是锐角三角形 | |
| B. | 一定是直角三角形 | |
| C. | 一定是钝角三角形 | |
| D. | 可能是锐角三角形,也可能是钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $-\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com