| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $-\frac{{2\sqrt{5}}}{5}$ |
分析 由角的范围可得sin$\frac{α}{2}$>0,cos$\frac{α}{2}$<0,利用二倍角公式可得2sin$\frac{α}{2}$cos$\frac{α}{2}$=-$\frac{4}{5}$,又由同角三角函数基本关系式可得sin2$\frac{α}{2}$+cos2$\frac{α}{2}$=1,联立即可解得cos$\frac{α}{2}$的值.
解答 解:∵$π<α<\frac{3π}{2}$,
∴$\frac{π}{2}$<$\frac{α}{2}$<$\frac{3π}{4}$,可得:sin$\frac{α}{2}$>0,cos$\frac{α}{2}$<0,
∵$sinα=-\frac{4}{5}$,可得:2sin$\frac{α}{2}$cos$\frac{α}{2}$=-$\frac{4}{5}$,①,
又∵sin2$\frac{α}{2}$+cos2$\frac{α}{2}$=1,②
∴①+②解得:sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{5}}{5}$,②-①解得:sin$\frac{α}{2}$-cos$\frac{α}{2}$=$\frac{3\sqrt{5}}{5}$,
∴两式相减可得cos$\frac{α}{2}$=-$\frac{\sqrt{5}}{5}$.
故选:B.
点评 本题主要考查了二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 成绩等级 | A | B | C | D | E |
| 成绩(分) | 90 | 70 | 60 | 40 | 30 |
| 人数(名) | 4 | 6 | 10 | 7 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x+$\frac{π}{3}$)+1 | B. | y=sin(2x-$\frac{π}{3}$)+1 | C. | y=sin(2x+$\frac{π}{6}$)+1 | D. | y=sin(2x-$\frac{π}{6}$)+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 22.5 | C. | 22.75 | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com