精英家教网 > 高中数学 > 题目详情
11.命题“?x∈[-2,3],x<3”的否定是?x∈[-2,3],x≥3.

分析 根据全称命题的否定是特称命题进行求解即可.

解答 解:命题是全称命题,
则命题的否定是:?x∈[-2,3],x≥3,
故答案为:?x∈[-2,3],x≥3

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.渐开线$\left\{\begin{array}{l}x=6(cosϕ+ϕsinϕ)\\ y=6(sinϕ-ϕcosϕ)\end{array}\right.(ϕ为$为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为(±6$\sqrt{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列五个导数式:
①(x4)′=4x3
②(cosx)′=sinx;  
③(2x)′=2xln2;
④${(lnx)^'}=-\frac{1}{x}$;
⑤${(\frac{1}{x})^'}=\frac{1}{x^2}$.
其中正确的导数式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a、b是两条不重合的直线,α、β是两个不重合的平面,给出四个命题:
①a∥b,b∥α,则a∥α
②a、b?α,a∥β,b∥β,则α∥β
③a⊥α,b∥α,则a⊥b
其中正确命题的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a3,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列的通项公式;  
(Ⅱ)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x+log2(x+1)在区间[0,1]上的最大值和最小值之和为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足递推式an=2an-1+1(n≥2),其中a4=15.
(1)求证:数列{an+1}为等比数列;  
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin2x的图象向左$\frac{π}{6}$平移个单位,向上平移1个单位,得到的函数解析式为(  )
A.y=sin(2x+$\frac{π}{3}$)+1B.y=sin(2x-$\frac{π}{3}$)+1C.y=sin(2x+$\frac{π}{6}$)+1D.y=sin(2x-$\frac{π}{6}$)+1

查看答案和解析>>

同步练习册答案