精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足递推式an=2an-1+1(n≥2),其中a4=15.
(1)求证:数列{an+1}为等比数列;  
(2)求数列{an}的前n项和Sn

分析 (1)由an=2an-1+1变形为:an+1=2(an-1+1),利用等比数列的通项公式即可得出.
(2)由${a_n}={2^n}-1$,利用等比数列的前n项和公式即可得出.

解答 (1)证明:由an=2an-1+1变形为:an+1=2an-1+2,即an+1=2(an-1+1),
∴{an+1}是以a1+1=2为首项以2为公比的等比数列;
(2)解:∵${a_n}={2^n}-1$,
∴Sn=a1+a2+a3+…+an
=(21-1)+(22-1)+(23-1)+…+(2n-1)
=(21+22+23+…+2n)-n
=$\frac{{2(1-{2^n})}}{1-2}-n$
=2n+1-2-n.

点评 本题考查了递推关系的应用、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知正三棱椎的棱长为3,则它的内切球的体积为(  )
A.$\frac{{\sqrt{6}}}{8}π$B.$\frac{{\sqrt{6}}}{4}π$C.$\frac{{\sqrt{3}}}{4}π$D.$\frac{{\sqrt{3}}}{12}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“?x∈[-2,3],x<3”的否定是?x∈[-2,3],x≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个正四棱柱的侧面展开图是一个边长为8cm的正方形,则它的体积是32cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数$\frac{2a+i}{1-2i}{i^{2015}}(i$是虚数单位)为纯虚数,则实数a的值为$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若△ABC的三边长分别为$\sqrt{3}$,2,$\sqrt{5}$,则△ABC的形状是(  )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若(a+b+c)(b+c-a)=3bc,则A=(  )
A.90°B.60°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c表示直线,α表示平面,下列条件中,能使a⊥α的是(  )
A.a⊥b,a⊥c,b?α,c?αB.a∥b,b⊥αC.a∩b=A,b?α,a⊥bD.a⊥b,b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$Γ:\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,若Γ与圆E:${x^2}+{({y-\frac{3}{2}})^2}=1$相交于M,N两点,且圆E在Γ内的弧长为$\frac{2}{3}π$.
(Ⅰ)求a,b的值;
(Ⅱ)过椭圆Γ的上焦点作两条相互垂直的直线,分别交椭圆Γ于A,B、C,D,求证:$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$为定值.

查看答案和解析>>

同步练习册答案