精英家教网 > 高中数学 > 题目详情
10.已知椭圆$Γ:\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,若Γ与圆E:${x^2}+{({y-\frac{3}{2}})^2}=1$相交于M,N两点,且圆E在Γ内的弧长为$\frac{2}{3}π$.
(Ⅰ)求a,b的值;
(Ⅱ)过椭圆Γ的上焦点作两条相互垂直的直线,分别交椭圆Γ于A,B、C,D,求证:$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$为定值.

分析 (Ⅰ)求得圆E的圆心和半径,由弧长公式可得圆心角,由任意角的三角函数的定义可得M的坐标,代入椭圆方程,运用离心率公式可得a,b;
(Ⅱ)求出椭圆的方程和准线方程,讨论直线AB的斜率,结合直线方程和椭圆方程联立,运用韦达定理和椭圆的第二定义,求得弦长,以及两直线垂直的条件,化简整理,即可得到定值.

解答 解:(Ⅰ)圆E:${x^2}+{({y-\frac{3}{2}})^2}=1$的圆心为(0,$\frac{3}{2}$),半径为r=1,
圆E在Γ内的弧长为$\frac{2}{3}π$,可得∠NEN•r=$\frac{2π}{3}$,
即有∠NEN=$\frac{2π}{3}$,设M在第一象限,可得
xM=rsin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,yM=$\frac{3}{2}$-rcos$\frac{π}{3}$=$\frac{3}{2}$-$\frac{1}{2}$=1,
即为M($\frac{\sqrt{3}}{2}$,1),代入椭圆方程可得$\frac{3}{4{b}^{2}}$+$\frac{1}{{a}^{2}}$=1,
由e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2-b2=c2
解得a=2,b=1;
(Ⅱ)证明:椭圆的方程为$\frac{{y}^{2}}{4}$+x2=1,c=$\sqrt{3}$,上准线方程为y=$\frac{4}{\sqrt{3}}$,
上焦点为(0,$\sqrt{3}$),e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
当直线AB的斜率为0,可得|AB|=$\frac{2{b}^{2}}{a}$=1,
|CD|=2a=4,则$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$=1+$\frac{1}{4}$=$\frac{5}{4}$;
当直线AB的斜率存在时,
设AB:y=kx+$\sqrt{3}$(k≠0),则 CD:y=-$\frac{1}{k}$x+$\sqrt{3}$,
又设点A(x1,y1),B(x2,y2).
联立方程组$\left\{\begin{array}{l}{y=kx+\sqrt{3}}\\{4{x}^{2}+{y}^{2}=4}\end{array}\right.$,
消去y并化简得(4+k2)x2+2$\sqrt{3}$kx-1=0,
∴x1+x2=-$\frac{2\sqrt{3}k}{4+{k}^{2}}$,y1+y2=k(x1+x2)+2$\sqrt{3}$=$\frac{8\sqrt{3}}{4+{k}^{2}}$,
即有|AB|=e($\frac{8}{\sqrt{3}}$-y1-y2)=$\frac{\sqrt{3}}{2}$•($\frac{8}{\sqrt{3}}$-$\frac{8\sqrt{3}}{4+{k}^{2}}$)=$\frac{4(1+{k}^{2})}{4+{k}^{2}}$,
将k换为-$\frac{1}{k}$,可得|CD|=$\frac{4({k}^{2}+1)}{4{k}^{2}+1}$,
即有$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$=$\frac{4+{k}^{2}}{4(1+{k}^{2})}$+$\frac{4{k}^{2}+1}{4({k}^{2}+1)}$=$\frac{5}{4}$.
综上可得:$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$为定值$\frac{5}{4}$.

点评 本题考查椭圆的参数的求法,注意运用圆的有关知识,考查定值的证明,注意运用直线方程和椭圆联立,运用韦达定理和弦长公式的运用,体现了分类讨论的数学思想方法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足递推式an=2an-1+1(n≥2),其中a4=15.
(1)求证:数列{an+1}为等比数列;  
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin2x的图象向左$\frac{π}{6}$平移个单位,向上平移1个单位,得到的函数解析式为(  )
A.y=sin(2x+$\frac{π}{3}$)+1B.y=sin(2x-$\frac{π}{3}$)+1C.y=sin(2x+$\frac{π}{6}$)+1D.y=sin(2x-$\frac{π}{6}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,$\frac{3π}{4}$).则sin(2x+$\frac{π}{3}$)=-$\frac{24+7\sqrt{3}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是函数f(x)=sin(x+φ)一个周期内的图象,则φ可能等于(  )
A.$\frac{5π}{6}$B.$\frac{π}{2}$C.$-\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果定义在R上的函数f(x)对任意两个不等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“Z函数”,给出函数:①y=x3+1;②$y={(\frac{1}{2})^x}$;③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$,以上函数为“Z函数”序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若质点A按规律s=2t2运动,则质点A在t=1时的瞬时速度是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在梯形ABCD中AD∥BC,已知AD=4,BC=6,若$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$(m,n∈R)则$\frac{m}{n}$=(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,-1),A(0,4),B(n,t),C(t,ksinθ)θ∈[0,$\frac{π}{2}$]
(1)若$\overrightarrow{AB}⊥\overrightarrow{a}$,且$\frac{\sqrt{2}}{2}$|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$|(O为原点),求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,求t关于θ的函数;
(3)求tsinθ取得最大值1(k≥2)时的$\overrightarrow{AC}$.

查看答案和解析>>

同步练习册答案