精英家教网 > 高中数学 > 题目详情
12.在△ABC中,若(a+b+c)(b+c-a)=3bc,则A=(  )
A.90°B.60°C.135°D.150°

分析 (a+b+c)(b+c-a)=3bc,展开化为:b2+c2-a2=bc.再利用余弦定理即可得出.

解答 解:∵(a+b+c)(b+c-a)=3bc,
∴(b+c)2-a2=3bc,化为:b2+c2-a2=bc.
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=60°.
故选:B.

点评 本题考查了余弦定理、乘法公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.给出下列五个导数式:
①(x4)′=4x3
②(cosx)′=sinx;  
③(2x)′=2xln2;
④${(lnx)^'}=-\frac{1}{x}$;
⑤${(\frac{1}{x})^'}=\frac{1}{x^2}$.
其中正确的导数式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x+log2(x+1)在区间[0,1]上的最大值和最小值之和为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足递推式an=2an-1+1(n≥2),其中a4=15.
(1)求证:数列{an+1}为等比数列;  
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点$({1,\frac{{\sqrt{2}}}{2}})$,离心率为$\frac{{\sqrt{2}}}{2}$,过椭圆C的右焦点F作垂直于x轴的直线与椭圆C相交于A,B两点,直线l:y=mx+n与椭圆C交于C,D两点,与线段AB相交于一点(与A,B不重合).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值?若有,求出最大值及对应直线l的方程,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:
成绩等级ABCDE
成绩(分)9070604030
人数(名)461073
(1)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A或B”的概率;
(2)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:平面上两个不相等向量,$\overrightarrow{m}$=(3,4),$\overrightarrow{n}$=(x+1,2x)
(1)若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),求实数x;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=14,求$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin2x的图象向左$\frac{π}{6}$平移个单位,向上平移1个单位,得到的函数解析式为(  )
A.y=sin(2x+$\frac{π}{3}$)+1B.y=sin(2x-$\frac{π}{3}$)+1C.y=sin(2x+$\frac{π}{6}$)+1D.y=sin(2x-$\frac{π}{6}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若质点A按规律s=2t2运动,则质点A在t=1时的瞬时速度是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

同步练习册答案