精英家教网 > 高中数学 > 题目详情
18.在△ABC中,a,b,c分别为A,B,C所对应的边,若acosB+bcosA=$\frac{c}{2cosC}$.
(Ⅰ)求C;
(Ⅱ)若$\overrightarrow{m}$=($\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$,cosB),$\overrightarrow{n}$=(1,sinA),求$\overrightarrow{m}$$•\overrightarrow{n}$的取值范围.

分析 (I)利用正弦定理、和差公式即可得出;
(II)利用数量积运算性质、和差公式、倍角公式、三角函数的单调性即可得出.

解答 解:(I)∵acosB+bcosA=$\frac{c}{2cosC}$,
∴sinAcosB+sinBcosA=$\frac{sinC}{2cosC}$,sin(A+B)=sinC=$\frac{sinC}{2cosC}$,sinC≠0,
∴cosC=$\frac{1}{2}$,C∈(0,π),∴C=$\frac{π}{3}$.
(II)$\overrightarrow{m}$$•\overrightarrow{n}$=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+cosBsinA=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+cosB$sin(\frac{2π}{3}-B)$=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+$\frac{\sqrt{3}}{2}$cos2B+$\frac{1}{2}cosBsinB$
=$\sqrt{3}×\frac{1-cos2B}{2}$+$\frac{\sqrt{3}}{2}×\frac{1+cos2B}{2}$+$\frac{1}{4}$sin2B-$\frac{3\sqrt{3}}{4}$
=$\frac{1}{2}(\frac{1}{2}sin2B-\frac{\sqrt{3}}{2}cos2B)$
=$\frac{1}{2}$$sin(2B-\frac{π}{3})$.
∵B∈$(0,\frac{2π}{3})$,∴$(2B-\frac{π}{3})$∈$(-\frac{π}{3},π)$.
∴$sin(2B-\frac{π}{3})$∈$(-\frac{\sqrt{3}}{2},1]$.
∴$\overrightarrow{m}$$•\overrightarrow{n}$的取值范围是$(-\frac{\sqrt{3}}{4},\frac{1}{2}]$.

点评 本题考查了数量积运算性质、和差公式、倍角公式、三角函数的单调性、正弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四边形ACDF为边长为2的正方形,四边形CBED为直角梯形,∠DCB=∠CDE=90°,M为AB的中点,CB=3,AB=$\sqrt{5}$,DE=1.
(I)证明:平面CBED⊥平面ABC
(Ⅱ)求二面角F-EB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=sinx-$\sqrt{3}$cosx(1)最大、小值;(2)最小正周期;(3)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线mx-y-2008=0的倾斜角的最大值为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的两个单位向量,则(2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)=-$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.渐开线$\left\{\begin{array}{l}x=6(cosϕ+ϕsinϕ)\\ y=6(sinϕ-ϕcosϕ)\end{array}\right.(ϕ为$为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为(±6$\sqrt{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点(1,2)是函数f(x)=ax(a>0,且a≠1)的图象上一点,数列{an}的前n项和Sn=f(n)-1.
(1)求数列{an}的通项公式;
(2)求数列{an}前2016项中的第3项,第6项,…,第3k项删去,求数列{an}前2016项中剩余项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案