分析 (I)利用正弦定理、和差公式即可得出;
(II)利用数量积运算性质、和差公式、倍角公式、三角函数的单调性即可得出.
解答 解:(I)∵acosB+bcosA=$\frac{c}{2cosC}$,
∴sinAcosB+sinBcosA=$\frac{sinC}{2cosC}$,sin(A+B)=sinC=$\frac{sinC}{2cosC}$,sinC≠0,
∴cosC=$\frac{1}{2}$,C∈(0,π),∴C=$\frac{π}{3}$.
(II)$\overrightarrow{m}$$•\overrightarrow{n}$=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+cosBsinA=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+cosB$sin(\frac{2π}{3}-B)$=$\sqrt{3}$sin2B-$\frac{3\sqrt{3}}{4}$+$\frac{\sqrt{3}}{2}$cos2B+$\frac{1}{2}cosBsinB$
=$\sqrt{3}×\frac{1-cos2B}{2}$+$\frac{\sqrt{3}}{2}×\frac{1+cos2B}{2}$+$\frac{1}{4}$sin2B-$\frac{3\sqrt{3}}{4}$
=$\frac{1}{2}(\frac{1}{2}sin2B-\frac{\sqrt{3}}{2}cos2B)$
=$\frac{1}{2}$$sin(2B-\frac{π}{3})$.
∵B∈$(0,\frac{2π}{3})$,∴$(2B-\frac{π}{3})$∈$(-\frac{π}{3},π)$.
∴$sin(2B-\frac{π}{3})$∈$(-\frac{\sqrt{3}}{2},1]$.
∴$\overrightarrow{m}$$•\overrightarrow{n}$的取值范围是$(-\frac{\sqrt{3}}{4},\frac{1}{2}]$.
点评 本题考查了数量积运算性质、和差公式、倍角公式、三角函数的单调性、正弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| η | 0 | 1 | 2 |
| P | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com