精英家教网 > 高中数学 > 题目详情
7.如图几何体E-ABCD是四棱锥,△ABD为正三角形,∠BCD=120°,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,且EC⊥BD.
(1)求证:平面BED⊥平面AEC;
(2)M是棱AE的中点,求证:DM∥平面EBC;
(3)求二面角D-BM-C的平面角的余弦值.

分析 (1)根据面面垂直的判定定理即可证明平面BED⊥平面AEC;
(2)根据线面平行的判定定理即可证明DM∥平面EBC;
(3)建立坐标系,求出平面的法向量,利用向量法即可求二面角D-BM-C的平面角的余弦值

解答 解:(1)∵,△ABD为正三角形,∠BCD=120°,CB=CD=CE=1,
∴取BD的中点O,则AO⊥BD,OC⊥BD,
则BD⊥AC,
∵EC⊥BD,EC∩AC=C,
∴BD⊥面AEC,
∵BD?面BED,
∴平面BED⊥平面AEC
(2)若M是棱AE的中点,取AB的中点N,则MN是△ABE的中位线,
则MN∥BE,
∵∠BCD=120°,CB=CD=1,
∴∠CBO=30°,
∵∠ABD=60°,
∴∠ABD+∠CBD=60°+30°=90°,
即AB⊥BC,
∵DN⊥AB,
∴DN∥BC,
∵DM∩MN=M,∴面DMN∥面EBC,
∵DM?面DMN,
∴DM∥平面EBC.
(3)由(1)知BD⊥面AEC,
∵∠BCD=120°,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,
∴OC=$\frac{1}{2}$,AO=$\frac{3}{2}$,AC=$\frac{1}{2}$+$\frac{3}{2}$=2,
则AE2+CE2=3+1=4=AC2
则AE⊥CE,
∵OC=$\frac{1}{2}$,CE=1,
∴OE⊥AC,则OE=$\frac{\sqrt{3}}{2}$
建立以O为原点,OA,OB,OE为x,y,z轴的坐标系如图:
则D(0,-$\frac{\sqrt{3}}{2}$,0),A($\frac{3}{2}$,0,0),E(0,0,$\frac{\sqrt{3}}{2}$),M($\frac{3}{4}$,0,$\frac{\sqrt{3}}{4}$),B(0,$\frac{\sqrt{3}}{2}$,0),
C(-$\frac{1}{2}$,0,0),
则$\overrightarrow{BM}$=($\frac{3}{4}$,-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{4}$),$\overrightarrow{DB}$=(0,$\sqrt{3}$,0),$\overrightarrow{BC}$=(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,0)
设平面DBM的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BM}=\frac{3}{4}x-\frac{\sqrt{3}}{2}y+\frac{\sqrt{3}}{4}z=0}\\{\overrightarrow{m}•\overrightarrow{DB}=\sqrt{3}y=0}\end{array}\right.$,则y=0,令z=$\sqrt{3}$,则x=-1,
即$\overrightarrow{m}$=(-1,0,$\sqrt{3}$),
设平面BMC的一个法向量为$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BM}=\frac{3}{4}x-\frac{\sqrt{3}}{2}y+\frac{\sqrt{3}}{4}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-\frac{1}{2}x-\frac{\sqrt{3}}{2}y=0}\end{array}\right.$,
则y=$\sqrt{3}$,令x=-3,则z=5$\sqrt{3}$,
$\overrightarrow{n}$=(-3,$\sqrt{3}$,5$\sqrt{3}$),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{3+5\sqrt{3}×\sqrt{3}}{\sqrt{1+(\sqrt{3})^{2}}•\sqrt{(-3)^{2}+(\sqrt{3})^{2}+(5\sqrt{3})^{2}}}$=$\frac{18}{2×\sqrt{87}}$=$\frac{3\sqrt{87}}{29}$,
即二面角D-BM-C的平面角的余弦值是$\frac{3\sqrt{87}}{29}$.

点评 本小题主要考查线面平行,面面垂直的判断,二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.①命题“存在${x_0}∈R,{2^{x_0}}≤0$”的否定是“不存在${x_0}∈R,{2^{x_0}}>0$”
②若z是纯虚数,则z2<0
③若x+y≠3,则x≠2或y≠1
④以直角三角形的一边为旋转轴,旋转一周所得的旋转体是圆锥
以上正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线C:y2=12x与点M(-3,4),过C的焦点且斜率为k的直线与C交于A,B两点,若$\overrightarrow{MA}•\overrightarrow{MB}=0$,则k的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x∈R,使得x2<1”的否定是(  )
A.?x∈R,都有x2<1B.?x∈R,使得x2>1
C.?x∈R,使得x2≥1D.?x∈R,都有x≤-1或x≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=e2x•cos3x.
(1)求f′(x);
(2)若$m=\int_0^{2π}{sinxdx}$,求曲线y=f(x)在点(m,f(m))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A′B′C′D′中,求面A′BCD′与面ABCD所成二面角的大小(取锐角).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是某空间几何体的三视图,则该几何体的体积为4-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn=(a+1)n2+a,某三角形三边为a2,a3,a4,则该三角的面积为$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.实数x,y满足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,则$\frac{y-1}{x-1}$的最小值是(  )
A.-5B.-$\frac{1}{2}$C.$\frac{1}{2}$D.5

查看答案和解析>>

同步练习册答案