精英家教网 > 高中数学 > 题目详情
1.数列{an}的前n项和Sn=n2+2n(n∈N*),若m-n=5,则am-an=(  )
A.2B.5C.-5D.10

分析 由已知数列的前n项和,求出数列的通项公式,结合m-n=5,可求am-an的值.

解答 解:由Sn=n2+2n,得a1=S1=3,
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}+2n-(n-1)^{2}-2(n-1)$=2n+1.
验证a1=3适合上式,
∴an=2n+1.
又m-n=5,则m=n+5,
∴am-an=an+5-an=2(n+5)+1-2n-1=10.
故选:D.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知a,b∈R,函数f(x)=x2-2(a-5)x+b+4与函数g(x)=x2+2(a-5)x-b+4均没有零点,若ak-b=15,则实数k的取值范围为(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C,D四点任意三点不共线
(1)若|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{BC}$|=|$\overrightarrow{AC}$|,求$\overrightarrow{CB}$+$\overrightarrow{CA}$与$\overrightarrow{AC}$的夹角
(2)若$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且|$\overrightarrow{AB}$-$\overrightarrow{AD}$|=|$\overrightarrow{AC}$|=10,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为
η0 1 2
P $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:$\frac{sin(180°+α)cos(180°+α)}{cos(540°+α)tan(α-540°)}$=-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=sinx-$\sqrt{3}$cosx(1)最大、小值;(2)最小正周期;(3)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线mx-y-2008=0的倾斜角的最大值为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.渐开线$\left\{\begin{array}{l}x=6(cosϕ+ϕsinϕ)\\ y=6(sinϕ-ϕcosϕ)\end{array}\right.(ϕ为$为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为(±6$\sqrt{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列五个导数式:
①(x4)′=4x3
②(cosx)′=sinx;  
③(2x)′=2xln2;
④${(lnx)^'}=-\frac{1}{x}$;
⑤${(\frac{1}{x})^'}=\frac{1}{x^2}$.
其中正确的导数式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案