精英家教网 > 高中数学 > 题目详情
18.椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上总存在点P,使$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=0$,F1、F2为椭圆的焦点,那么椭圆离心率e的取值范围是(  )
A.(0,$\sqrt{2}-1$)B.[$\sqrt{2}-1,\frac{1}{2}$]C.[$\frac{1}{2},\frac{\sqrt{2}}{2}$]D.[$\frac{\sqrt{2}}{2},1$)

分析 由$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=0$,可得PF1⊥PF2,P在以F1F2为直径的圆上,由题意可得半径为c的圆与椭圆有交点,即为
c≥b,运用离心率公式和不等式的解法,即可得到所求范围.

解答 解:由$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=0$,可得
PF1⊥PF2,P在以F1F2为直径的圆上,
可设圆的半径为c,圆心为O,
由题意可得椭圆与圆均有交点,
则c≥b,即c2≥b2=a2-c2
即为c2≥$\frac{1}{2}$a2
e=$\frac{c}{a}$≥$\frac{\sqrt{2}}{2}$,且0<e<1,
可得e的范围是[$\frac{\sqrt{2}}{2}$,1).
故选:D.

点评 本题考查椭圆的离心率的范围,考查向量垂直的条件,运用圆与椭圆有交点是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}满足:a3=7,a5+a7=26,数列{2nan}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆方程;
(Ⅱ)设点A是椭圆C的左顶点,P,Q为椭圆C上异于点A的两动点,若直线AP,AQ的斜率之积为$-\frac{1}{4}$,问直线PQ是否恒过定点?若恒过定点,求出该点坐标;若不恒过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P(x0,y0) 在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}=1$.
根据以上性质,解决以下问题:
已知椭圆L:$\frac{x^2}{4}$+y2=1,若Q(2,2)是椭圆L外一点,经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是x+4y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的长轴长与焦距比为2:1,左焦点F(-2,0),一定点为P(-8,0).
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)过P的直线与椭圆交于P1,P2两点,求△P1F2F面积的最大值及此时直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:$y=\sqrt{3}x-2\sqrt{3}$过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦点F2,且椭圆C的中心关于直线l的对称点在直线$x=\frac{a^2}{c}$(其中2c为焦距)上,直线m过椭圆左焦点F1交椭圆C于M、N两点.
(1)求椭圆C的方程;
(2)若$|{\overrightarrow{{F_2}M}+\overrightarrow{{F_2}N}}|=5\sqrt{2}$,求直线m的方程;
(3)设$\overrightarrow{OM}•\overrightarrow{ON}=\frac{2λ}{tan∠MON}≠0$(O为坐标原点),当直线m绕点F1转动时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆和双曲线焦点F1,F2相同,且离心率互为倒数,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,椭圆的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=1+2sinα\end{array}\right.$(α为参数),直线l的参 数方程为$\left\{\begin{array}{l}x=1+tcos45°\\ y=tsin45°\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)求直线l截曲线C所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数1、a、b成等差数列,而1、b、a成等比数列,若a≠b,则a的值为(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案