精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an}满足:a3=7,a5+a7=26,数列{2nan}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

分析 (1)根据所给的等差数列的三个连续奇数项,得到数列的公差,写出数列的通项,以及根据求和公式即可求出.
(2)根据数列的前n项和公式,求出Sn=n2,继而求出bn=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),根据裂项求和得到数列{bn}的前n项和为Tn

解答 解:(1)∵等差数列an满足:a3=7,a5+a7=26,
∴a3+a5+a7=33,
∴a5=11
∴d=$\frac{11-7}{2}$=2
∴an=2n+1,
∴a1=3
∴Sn=3×21+5×22+7×23+…+(2n+1)2n
∴2Sn=3×22+5×23+7×24+…+(2n-1)2n+(2n+1)2n+1
∴-Sn=3×21+2×22+2×23+…+2×2n-(2n+1)2n+1=2+22+23+24+…+2n+1-(2n+1)2n+1
=$\frac{2(1-{2}^{n+1})}{1-2}$-(2n+1)2n+1=-2-(2n-1)2n+1
∴Sn=2+(2n-1)2n+1
(2)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Tn=b1+b2+…+bn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$$-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4n+4}$.

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知sinθ与cosθ是方程6x2-5x+m=0的两根,求m和sin3θ+cos3θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.6人外出旅游,现有9瓶完全相同的矿泉水,现将水分给6人,每人至少一瓶,共有多少种分法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+f′(2)(lnx-x),则f(1)=(  )
A.$\frac{5}{3}$B.-$\frac{5}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别是a,b,c,且sinA>sinB>sinC,a2-b2-c2<0,则角A的取值范围是(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{3}$,$\frac{π}{2}$)D.(0,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面上有A、B、C三点,满足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值为(  )
A.4B.-4C.-$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,已知b=5,c=4$\sqrt{2}$,B=45°,求a,S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上总存在点P,使$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}=0$,F1、F2为椭圆的焦点,那么椭圆离心率e的取值范围是(  )
A.(0,$\sqrt{2}-1$)B.[$\sqrt{2}-1,\frac{1}{2}$]C.[$\frac{1}{2},\frac{\sqrt{2}}{2}$]D.[$\frac{\sqrt{2}}{2},1$)

查看答案和解析>>

同步练习册答案