精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=1og4(4x+1)+kx(k∈R)是偶函数,则f(x)的最小值是$\frac{1}{2}$.

分析 利用函数是偶函数定义,求出k,然后求解函数的最值.

解答 解:函数f(x)=1og4(4x+1)+kx(k∈R)是偶函数,
可得:f(-x)=f(x),即:1og4(4-x+1)-kx=1og4(4x+1)+kx,
可得1og4(4x+1)-1og44x-kx=1og4(4x+1)+kx,
即:-x-kx=kx,解得k=-$\frac{1}{2}$.
知函数f(x)=1og4(4x+1)-$\frac{1}{2}$x.当x>0时,1og4(4x+1)>1og44x=x,
1og4(4x+1)-$\frac{1}{2}$x>x-$\frac{1}{2}x$=$\frac{1}{2}x$,函数f(x)=1og4(4x+1)-$\frac{1}{2}$x.是增函数,
x<0时,f(x)=1og4(4x+1)-$\frac{1}{2}$x是减函数,所以函数在x=0时取得最小值.
f(0)=1og4(40+1)-0=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的最值的求法,函数的奇偶性的性质与应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.己知函数f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,则f[f(-2)]=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=Asin(ωx)+b(A>0,ω>0)的最大值为2,最小值为0,其图象相邻两对称轴间的距离为2,则f(1)+f(2)+…+f(2008)=2008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}中,S4=-20,S8=-1640,求S12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{cos2x}{sin(x+\frac{π}{4})}$
(I)如果f(α)=$\frac{4}{3}$,试求sin2α的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.3-i(i为虚数单位)是关于x的方程x2+px+10=0(p∈R)的一个根,则p=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=(2x-1)${\;}^{-\frac{1}{2}}$+log2(x-x2)的定义域为($\frac{1}{2}$,1)(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则函数y=f(x)的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当$|\overrightarrow{OA}-\overrightarrow{OB}|<\frac{{2\sqrt{5}}}{3}$时,求直线斜率的取值范围.

查看答案和解析>>

同步练习册答案