精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则函数y=f(x)的零点个数是(  )
A.0B.1C.2D.3

分析 利用分段函数,分别通过解方程求出方程的根,即可求出函数的零点的个数.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,
则x≤0时,x2-1=0,解得x=-1.
x>0时,log2x=0,解得x=1.
函数y=f(x)的零点个数是:2.
故选:C.

点评 本题考查函数的零点个数与方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设函数f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=1og4(4x+1)+kx(k∈R)是偶函数,则f(x)的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\frac{a-sinx}{cosx}$在区间($\frac{π}{6}$,$\frac{π}{3}$)上单调递增,则实数a的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[$\sqrt{3}$,+∞)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正方体ABCD-A1B1C1D1中,连接A1C1,A1B,BC1,AD1,AC,CD1
(1)求证:A1C1∥平面ACD1
(2)求证:平面A1BC1∥平面ACD1
(3)设正方体ABCD-A1B1C1D1的棱长为a,求四面体ACB1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,若CB=CD=CF=a.
(Ⅰ)求证:平面BDE⊥平面AED;
(Ⅱ)求三棱锥A-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设f(x)满足:①任意x∈R,有f(x)+f(2-x)=0;②当x≥1时,f(x)=|x-a|-1,(a>0),若x∈R,恒有f(x)>f(x-m),则m的取值范围是(  )
A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-1≥0\\ y≤1\end{array}\right.$,则目标函数z=2x+y的最大值为5.

查看答案和解析>>

同步练习册答案