精英家教网 > 高中数学 > 题目详情
15.设f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

分析 化简可得f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,从而求和.

解答 解:∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
∴f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)
=(f($\frac{1}{2010}$)+f(2010))+(f($\frac{1}{2009}$)+f(2009))+…+(f($\frac{1}{3}$)+f(3))+(f($\frac{1}{2}$)+f(2))
=1+1+…+1+1
=2009.

点评 本题考查了函数的性质的判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设An,Bn是等差数列{an},{bn}的前n项和,且满足条件$\frac{A_n}{B_n}=\frac{n+5}{2n+2}$,则$\frac{{{a_{2015}}}}{{{b_{2017}}}}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}中,S4=-20,S8=-1640,求S12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.3-i(i为虚数单位)是关于x的方程x2+px+10=0(p∈R)的一个根,则p=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=(2x-1)${\;}^{-\frac{1}{2}}$+log2(x-x2)的定义域为($\frac{1}{2}$,1)(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a是实数,那么|a|<5成立的一个必要非充分条件是(  )
A.a<5B.|a|<4C.a2<25D.-5<a<5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,则函数y=f(x)的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$z=\frac{10}{3+i}-2i$,其中i是虚数单位,则|z|=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若等差数列{4n+1}与等比数列{3n}的公共项按照原来的顺序排成数列为{an},则a8=98

查看答案和解析>>

同步练习册答案