精英家教网 > 高中数学 > 题目详情
5.设An,Bn是等差数列{an},{bn}的前n项和,且满足条件$\frac{A_n}{B_n}=\frac{n+5}{2n+2}$,则$\frac{{{a_{2015}}}}{{{b_{2017}}}}$的值为$\frac{1}{2}$.

分析 设An=kn(n+5),Bn=kn(2n+2),求出通项,即可求出$\frac{{{a_{2015}}}}{{{b_{2017}}}}$的值.

解答 解:∵An,Bn是等差数列{an},{bn}的前n项和,且满足条件$\frac{A_n}{B_n}=\frac{n+5}{2n+2}$,
∴设An=kn(n+5),Bn=kn(2n+2),
∴an=An-An-1=2k(n+2),bn=Bn-Bn-1=4kn,
∴$\frac{{{a_{2015}}}}{{{b_{2017}}}}$=$\frac{2k(2015+2)}{4k×2017}$=$\frac{1}{2}$.
故答案是:$\frac{1}{2}$.

点评 本题考查等差数列的通项与求和,考查学生的计算能力,正确求出等差数列的通项是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]•cosx-$\sqrt{3}$sin2x;将f(x)的图象向右平移$\frac{π}{6}$个单位后得g(x)的图象.
(1)求函数g(x)在[0,π]上的值域;
(2)在△ABC中,若$\frac{b}{sinB}$=$\frac{\sqrt{3}a}{cosA}$,a=4,求$\sqrt{3}$b-c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=x3与y=($\frac{1}{2}$)x-2的图象的交点为(x0,y0),若x0∈(n,n+1),n∈N,则x0所在的区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,则F=max{|x2-4y+m|,|y2-2x+n|}的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x+λ•3-x(λ∈R)
(1)根据λ的不同取值,讨论函数的奇偶性,并说明理由;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P为线段CD上一点,且满足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,则$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(Ⅰ)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.
(Ⅱ)已知f(x)为定义在[a-1,2a+1]上的偶函数,当x≥0时,f(x)=ex+1,则f(2x+1)>f($\frac{x}{2}$+1)的解x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

查看答案和解析>>

同步练习册答案