分析 由题意可得F≥|x2-4y+m|,F≥|y2-2x+n|,相加,由绝对值不等式的性质和配方方法,可得最小值.
解答 解:F=max{|x2-4y+m|,|y2-2x+n|},
可得F≥|x2-4y+m|,F≥|y2-2x+n|,
即有2F≥|x2-4y+m|+|y2-2x+n|
≥|x2-4y+m+y2-2x+n|
=|x2-2x+y2-4y+6|
=|(x-1)2+(y-2)2+1|≥1,
即有2F≥1,
即F≥$\frac{1}{2}$,
可得x=1,y=2时,F取得最小值$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查函数的最值的求法,注意运用绝对值不等式的性质和配方思想,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com