精英家教网 > 高中数学 > 题目详情
18.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),则f(2016)=0.

分析 因为函数f(x)是定义在R上的奇函数,所以有f(0)=0,又因为f(x+2)=-f(x),所以有f(x+4)=-f(x+2)=f(x),所以函数f(x)的周期为4,
根据周期性可得出f(2016)=f(504×4+0)=f(0)=0.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0,
∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)的周期为4,
∴f(2016)=f(504×4+0)=f(0)=0,
故答案为0.

点评 考查了函数的奇偶性和函数的周期性.属于常规题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使A,B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=2x和g(x)=x3的部分图象的示意图如图所示.设两函数的图象交于点A(x1,y1)、B(x2,y2),x1<x2
(1)请指出示意图中曲线C1、C2分别对应哪一个函数?
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并说明理由;
(3)结合函数图象示意图,判断f(6)、g(6)、f(2010)、g(2010)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)对任意x∈R,都有f(x+1)=2f(x),当0≤x≤1时,f(x)=x(1-x),那么f(-1.5)=$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,则F=max{|x2-4y+m|,|y2-2x+n|}的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,且a≠1,下列函数中,在其定义域内是单调函数而且又是奇函数的是(  )
A.y=sinaxB.y=logax2C.y=ax-a-xD.y=tanax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P为线段CD上一点,且满足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,则$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知下列命题:
(1)若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c(\overrightarrow a≠\overrightarrow 0)$,则$\overrightarrow b$=$\overrightarrow c$;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$;
(3)若不平行的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow a$|=|$\overrightarrow b|$,则($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=0;
(4)若$\overrightarrow{a}$与$\overrightarrow{b}$平行,则$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$||$\overrightarrow b$|;
其中真命题的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=a3-2a+(m+a)i(a≥0,m∈R)的实部大于虚部,则m的取值范围为(  )
A.(-∞,-2)B.(-2,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

同步练习册答案