精英家教网 > 高中数学 > 题目详情
13.已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使A,B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.

分析 判断三点与P的距离,求出圆的半径,即可求解圆的方程.

解答 解:三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,可得PA=$\sqrt{10}$,PB=$\sqrt{13}$,PC=5.
因为A,B、C三点中一点在圆外,一点在圆上,一点在圆内,
可知圆的半径为:$\sqrt{13}$.
所求圆的方程为:(x-2)2+(y+1)2=13.

点评 本题考查圆的标准方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,从袋中随机取出两个球,则取出的球的编号之和不大于4的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.把复数z的共轭复数记作$\overline z$,若z=1+i,i为虚数单位,则$|{(1+z)•\overline z}|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的定义域为R,值域为[-4,8],图象经过点(0,5),直线x=$\frac{π}{6}$是其图象的一条对称轴,且f(x)在($\frac{π}{3}$,$\frac{π}{2}$)上单调递减.
(I)求函数f(x)的表达式.
(Ⅱ)已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且f(α)=4,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos(2x+$\frac{π}{6}$)的图象沿x向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,若P(x0,$\frac{1}{2}$)是函数y=g(x)的图象上一点,则sin($\frac{2π}{3}$-2x0)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的导数.
(1)y=x2sinx;
(2)y=3xex-2x+e;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=cos32x+ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}为等比数列,Sn是数列{an}的前n项和,且Sn>0,a6是a5、a4的等差中项,则数列{an}的公比q为(  )
A.-$\frac{1}{2}$或1B.$\frac{1}{2}$或1C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.经过点(-3,0),且方向向量为$\overrightarrow{v}$=(5,-2)的直线l的方程是2x+5y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),则f(2016)=0.

查看答案和解析>>

同步练习册答案