分析 (Ⅰ)根据函数的值域,定点,对称,和单调性的关系求出A,B,ω 和φ的值即可.
(Ⅱ)利用两角和差的余弦公式结合三角函数的倍角公式进行化简即可.
解答
解:(I)∵函数的值域为[-4,8],
∴A+B=8,-A+B=-4,
得 A=6,B=2,
此时f(x)=6sin(ωx+φ)+2,
∵图象经过点(0,5),
∴f(0)=6sinφ+2=5,
即sinφ=$\frac{1}{2}$,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
即f(x)=6sin(ωx+$\frac{π}{6}$)+2,
∵直线x=$\frac{π}{6}$是其图象的一条对称轴,且f(x)在($\frac{π}{3}$,$\frac{π}{2}$)上单调递减.
∴当x=$\frac{π}{6}$时,函数取得最大值,
即$\frac{π}{6}$•ω+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,则ω=12k+2,
∵f(x)在($\frac{π}{3}$,$\frac{π}{2}$)上单调递减,
∴$\frac{π}{2}$-$\frac{π}{3}$≤$\frac{T}{2}$=$\frac{2π}{2ω}$,
即$\frac{π}{6}$≤$\frac{π}{ω}$,
则ω≤6,
∵ω=12k+2,
∴当k=0时,ω=2,
则函数f(x)的表达式f(x)=6sin(2x+$\frac{π}{6}$)+2.
(Ⅱ)已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且f(α)=4,
∴f(α)=6sin(2α+$\frac{π}{6}$)+2=4,
即sin(2α+$\frac{π}{6}$)=$\frac{1}{3}$.
∵α∈($\frac{π}{6}$,$\frac{π}{2}$),∴2α∈($\frac{π}{3}$,π),
2α+$\frac{π}{6}$∈($\frac{π}{2}$,$\frac{7π}{6}$),
∵sin(2α+$\frac{π}{6}$)=$\frac{1}{3}$>0,
∴2α+$\frac{π}{6}$∈($\frac{π}{2}$,π),
则cos(2α+$\frac{π}{6}$)=-$\sqrt{1-(\frac{1}{3})^{2}}$=-$\sqrt{\frac{8}{9}}$=-$\frac{2\sqrt{2}}{3}$,
则cos2α=cos(2α+$\frac{π}{6}$-$\frac{π}{6}$)=cos(2α+$\frac{π}{6}$)cos$\frac{π}{6}$+sin(2α+$\frac{π}{6}$)sin$\frac{π}{6}$=-$\frac{2\sqrt{2}}{3}$×$\frac{\sqrt{3}}{2}$+$\frac{1}{3}×\frac{1}{2}$=$\frac{1-2\sqrt{6}}{6}$,
∵cos2α=1-2sin2α=$\frac{1-2\sqrt{6}}{6}$,
∴2sin2α=1-$\frac{1-2\sqrt{6}}{6}$=$\frac{5-2\sqrt{6}}{6}$,
则sin2α=$\frac{5-2\sqrt{6}}{12}$=$\frac{(\sqrt{3}-\sqrt{2})^{2}}{12}$,
则sinα=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{12}}$=$\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}$=$\frac{3-\sqrt{6}}{6}$.
点评 本题主要考查三角函数的解析式的求解以及三角函数值的计算,根据三角函数的图象和性质求出A,B,ω和φ的值是解决本题的关键.综合性较强.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin11°>sin168° | B. | sin194°<cos160° | ||
| C. | tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$) | D. | cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com