精英家教网 > 高中数学 > 题目详情
8.己知函数f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,则f[f(-2)]=16.

分析 先利用分段函数的性质求出f(-2),由此能求出f[f(-2)].

解答 解:∵f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-2x,x<0\end{array}$,
∴f(-2)=-2×(-2)=4,
f[f(-2)]=f(4)=42=16.
故答案为:16.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.等差数列的通项an=3n-2,则a20=(  )
A.58B.59C.78D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足约束条件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.-2$\sqrt{5}$B.2C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=x3与y=($\frac{1}{2}$)x-2的图象的交点为(x0,y0),若x0∈(n,n+1),n∈N,则x0所在的区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{{log}_a}x,x≥1}\end{array}}\right.$,若a=2,求f(f(2))=0;若f(x)是R上的单调函数,则a的取值范围是[$\frac{1}{7}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$max\{a,b\}=\left\{{\begin{array}{l}a&{(a≥b)}\\ b&{(a<b)}\end{array}}\right.$,已知x,y∈R,m+n=6,则F=max{|x2-4y+m|,|y2-2x+n|}的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x+λ•3-x(λ∈R)
(1)根据λ的不同取值,讨论函数的奇偶性,并说明理由;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=1og4(4x+1)+kx(k∈R)是偶函数,则f(x)的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案