精英家教网 > 高中数学 > 题目详情
15.如图,设Ox、Oy是平面内相交成45°角的两条数轴,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分别是x轴、y轴正方向同向的单位向量,若向量$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,则把有序数对(x,y)叫做向量$\overrightarrow{OP}$在坐标系xOy中的坐标,在此坐标系下,假设$\overrightarrow{OA}$=(-2,2$\sqrt{2}$),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(5,-3$\sqrt{2}$),则下列命题不正确的是(  )
A.$\overrightarrow{{e}_{1}}$=(1,0)B.|$\overrightarrow{OA}$|=2$\sqrt{3}$C.$\overrightarrow{OA}$∥$\overrightarrow{BC}$D.$\overrightarrow{OA}$⊥$\overrightarrow{OB}$

分析 利用定义判断A,根据余弦定理判断B,根据向量共线定理判定C,转化为正交分解判断D.

解答 解:$\overrightarrow{{e}_{1}}$=1×$\overrightarrow{{e}_{1}}$+0×$\overrightarrow{{e}_{1}}$,∴$\overrightarrow{{e}_{1}}$=(1,0);故A正确;
由余弦定理可知|$\overrightarrow{OA}$|=$\sqrt{4+8-2×2×2\sqrt{2}×cos45°}$=2,故B错误;
∵$\overrightarrow{BC}$=$\overrightarrow{OC}-\overrightarrow{OB}$=(3,-3$\sqrt{2}$)=-$\frac{3}{2}$$\overrightarrow{OA}$,∴$\overrightarrow{OA}$∥$\overrightarrow{BC}$,故C正确;
$\overrightarrow{OA}$的直角坐标为(0,2),$\overrightarrow{OB}$的直角坐标系为(2,0),
∴$\overrightarrow{OA}⊥\overrightarrow{OB}$.故D正确.
故选B.

点评 本题考查了平面向量的基本定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数y=sin x的图象经过以下变换后得到y=f(x)的图象:先向右平移 $\frac{π}{4}$; 然后纵坐标不变,横坐标伸长为原来的2倍; 最后横坐标不变,纵坐标伸长为原来的3倍;
(Ⅰ)写出函数y=f(x)的解析式,并求其单调增区间;
(Ⅱ)用“五点法”在给定的坐标系中作出函数的一个周期的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y=$\sqrt{(2-a){x}^{2}-2(a-2)x+4}$的定义域为R,则实数a的取值范围为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在斜三角形ABC中,tanA+tanB+tanAtanB=1,则∠C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$在$\vec a$上的投影为4,在x轴上的投影为2,则$\vec b$为(  )
A.(2,14)B.$({2,-\frac{2}{7}})$C.(2,4)D.$({-2,\frac{2}{7}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)是定义在R上的偶函数,满足f(2+x)=f(2-x),若函数y=f(x)在(0,4)上至少有一个零点,且f(0)=0,则函数y=f(x)在(-8,10]上的零点个数至少为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知公差不为0的等差数列{an}的首项a1为a(a∈R),且$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_4}$成等比数列.
(1)求数列{an}的通项公式;
(2)对n∈N*,试比较$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$与$\frac{1}{a_1}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)当x∈[0,2]时,F(x)=f(x)-g(x)为增函数,求实数m的取值范围;
(2)设函数$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)对x∈[0,5]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案