【题目】已知函数![]()
(1)已知直线
:
,
:
.若直线
与
关于
对称,又函数
在
处的切线与
垂直,求实数
的值;
(2)若函数
,则当
,
时,求证:
①
;
②
.
【答案】(1)
(2)①证明见解析②证明见解析
【解析】
(1)首先根据直线关于直线对称的直线的求法,求得
的方程及其斜率.根据函数
在
处的切线与
垂直列方程,解方程求得
的值.
(2)
①构造函数
,利用
的导函数证得当
时,
,由此证得
.
②由①知
成立,整理得
成立.利用构造函数法证得
,由此得到
,即
,化简后得到
.
(1)由
解得![]()
必过
与
的交点
.
在
上取点
,易得点
关于
对称的点为
,
即为直线
,所以
的方程为
,即
,其斜率为
.
又因为
,所以
,
,
由题意
,解得
.
(2)因为
,所以
.
①令
,则
,
则
,
且
,
,
时,
,
单调递减;
时,
,
单调递增.
因为
,所以
,因为
,
所以存在
,使
时,
,
单调递增;
时,
,
单调递减;
时,
,
单调递增.
又
,所以
时,
,即
,
所以
,即
成立.
②由①知
成立,即有
成立.
令
,即
.所以
时,
,![]()
单调递增;
时,
,
单调递减,所以
,即
,
因为
,所以
,所以
时,
,
即
时,
.
科目:高中数学 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有
人,现采用分层抽样的方法,从该单位上述员工中抽取
人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
.享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)
收入
个税起征点
专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用……等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.
新个税政策的税率表部分内容如下:
级数 | 一级 | 二级 | 三级 | 四级 | … |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元至25000元的部分 | 超过25000元至35000元的部分 | … |
税率(%) | 3 | 10 | 20 | 25 | … |
(1)现有李某月收入19600元,膝下有一名子女,需要赡养老人,(除此之外,无其它专项附加扣除)请问李某月应缴纳的个税金额为多少?
(2)现收集了某城市50名年龄在40岁到50岁之间的公司白领的相关资料,通过整理资料可知,有一个孩子的有40人,没有孩子的有10人,有一个孩子的人中有30人需要赡养老人,没有孩子的人中有5人需要赡养老人,并且他们均不符合其它专项扣除(受统计的50人中,任何两人均不在一个家庭).若他们的月收入均为20000元,试求在新个税政策下这50名公司白领的月平均缴纳个税金额为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆
的方程为
,圆
的方程为
,动圆
与圆
内切且与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)已知
与
为平面内的两个定点,过
点的直线
与轨迹
交于
,
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的左顶点为
,右焦点为
,
,
为椭圆
上两点,圆
.
(1)若
轴,且满足直线
与圆
相切,求圆
的方程;
(2)若圆
的半径为2,点
,
满足
,求直线
被圆
截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标中,直线
的参数方程为
,(
为参数)
.以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若
,试判断直线
与曲线
的位置关系;
(2)当
时,直线
与曲线
的交点为
,若点
的极坐标为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
的坐标为
,直线
的参数方程为
(
为参数).以坐标原点
为极点,以
轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆
极坐标方程为
.
(Ⅰ)当
时,求直线
的普通方程和圆
的直角坐标方程;
(Ⅱ)直线
与圆
的交点为
、
,证明:
是与
无关的定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
做斜率为
的直线
,椭圆
与直线
交于
两点,当直线
垂直于
轴时
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
变化时,在
轴上是否存在点
,使得
是以
为底的等腰三角形,若存在求出
的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率;
(2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;
(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com