精英家教网 > 高中数学 > 题目详情
9.3男3女共6名同学排成一排合影,要求女同学不站两头且不全相邻,则不同的排法种数为72.

分析 根据题意,先计算女同学不站两头的情况数目,在计算其中女同学不站两头且女生全部相邻情况数目,由间接法计算可得答案.

解答 解:根据题意,先计算女同学不站两头的情况数目:
在3名男生中任选2人,安排在两头,有A32=6种情况,
将剩余的4人全排列,安排在中间4个位置,有A44=24种情况,
则女同学不站两头的情况有6×24=144种;
再计算其中女同学不站两头且女生全部相邻的情况数目:
在3名男生中任选2人,安排在两头,有A32=6种情况,
将三名女生看成一个整体,考虑其顺序有A33=6种情况,
将整个整体与剩余的男生全排列,安排在中间位置,有A22=2种情况,
则女同学不站两头且女生全部相邻的情况有6×6×2=72种;
故女同学不站两头且不全相邻,则不同的排法种数为144-72=72;
故答案为:72.

点评 本题考查排列、组合的综合应用,为了避免分类讨论,可以选用间接法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和Sn,且a3=7,S11=143,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知ABCD是复平面内的平行四边形,并且A,B,C三点对应的复数分别是3+i,-2i,-1-i,求D点对应的复数;
(2)已知复数Z1=2,$\frac{{Z}_{2}}{{Z}_{1}}$=i,并且|z|=2$\sqrt{2}$,|z-z1|=|z-z2|,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线x2=2py上的点M(m,3)到它的焦点的距离为5,则该抛物线的准线方程为y=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设i是虚数单位,则复数z=$\frac{1-3{i}^{3}}{1-2i}$的共轭复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知φ∈($\frac{π}{2}$,π),且sinφ=$\frac{3}{5}$,若函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,则f($\frac{π}{4}$)的值为(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+a+1,x>0}\end{array}\right.$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(  )
A.(0,1)B.(0,2)C.(-1,2)D.(1+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[-1,3]上随机选取一个数x,ex(e为自然对数的底数)的值介于e到e2之间的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《九章算术》商功章有云:今有圆困,高一丈三尺三寸、少半寸,容米二千斛,问周几何?即一圆柱形谷仓,高1丈3尺$3\frac{1}{3}$寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆的周长约为(  )
A.1丈3尺B.5丈4尺C.9丈2尺D.48

查看答案和解析>>

同步练习册答案