精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆上任意一点到其两个焦点的距离之和等于,且圆经过椭圆的焦点.

1)求椭圆的方程;

2)如图,若直线与圆O相切,且与椭圆相交于AB两点,直线平行且与椭圆相切于点MOM位于直线的两侧).记的面积分别为,求的取值范围.

【答案】12

【解析】

1)已知椭圆上任意一点到其两个焦点的距离之和等于,可得,圆经过椭圆的焦点,求得,即可求得椭圆的方程;

2)由于与圆相切,可得,联立椭圆和方程,由直线与椭圆相切,可得,根据三角形面积公式求得,进而求得的取值范围.

1已知椭圆上任意一点到其两个焦点的距离之和等于

由椭圆定义可得

椭圆的焦点在

交点为

经过椭圆的焦点

可得椭圆

故椭圆方程为

2)由于与圆相切,

根据点到直线距离公式可得圆的圆心到直线的距离为:

设直线的方程为

联立椭圆和方程,可得消去y

可得:

直线与椭圆相切,

,整理得

直线之间的距离

可得:

位于直线的两侧,

mn同号,

的取值范围是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且以椭圆上的点和长轴两端点为顶点的三角形的面积的最大值为.

1)求椭圆的方程;

2)经过定点的直线交椭圆于不同的两点,点关于轴的对称点为,试证明:直线轴的交点为一个定点,且为原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MNP分别是C1D1BCA1D1的中点,有下列四个结论:

APCM是异面直线;②APCMDD1相交于一点;③MNBD1

MN∥平面BB1D1D

其中所有正确结论的编号是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某晚会上某歌舞节目的表演者是3个女孩和4个男孩.演出结束后,7个人合影留念(3个人站在前排,4个人站在后排),其中男孩甲、乙要求站在一起,女孩丙不能站在两边,不同站法的种数为(

A.96B.240C.288D.432

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,,且是等腰直角三角形,其中为斜边,若把沿边折叠到的位置,使平面平面

1)证明:

2)若为棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点,其焦距为,过的直线与交于两点,且的周长是.

1)求的方程;

2)若上的动点,从点(是坐标系原点)向圆作两条切线,分别交两点.已知直线的斜率存在,并分别记为.

)求证:为定值;

)试问是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面ABC,平面平面PBC

1)证明:平面PBC

2)求点C到平面PBA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新年伊始,新型冠状病毒来势汹汹,疫情使得各地学生在寒假结束之后无法返校,教育部就此提出了线上教学和远程教学,停课不停学的要求也得到了家长们的赞同.各地学校开展各式各样的线上教学,某地学校为了加强学生爱国教育,拟开设国学课,为了了解学生喜欢国学是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:

喜欢国学

不喜欢国学

合计

男生

20

50

女生

10

合计

100

1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系?

2)针对问卷调查的100名学生,学校决定从喜欢国学的人中按分层抽样的方法随机抽取6人成立国学宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中女生人数为,求的分布列和数学期望.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是R上的奇函数且单调递增,则下列函数是偶函数且在(0+∞)上单调递增的有(  )

y|fx|

yfx2+x);

yf|x|);

yefx+efx

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

同步练习册答案